Abstract. Precise and accurate hydroxyl radical (OH) measurements are essential to investigate mechanisms for oxidation and transformation of trace gases and processes leading to the formation of secondary pollutants like ozone (O3) in the troposphere. Laser-induced fluorescence (LIF) is a widely used technique for the measurement of ambient OH radicals and was used for the majority of field campaigns and chamber experiments. Recently, most LIF instruments in use for atmospheric measurements of OH radicals introduced chemical modulation to separate the ambient OH radical concentration from possible interferences by chemically removing ambient OH radicals before they enter the detection cell (Mao et al., 2012; Novelli et al., 2014a). In this study, we describe the application and characterization of a chemical modulation reactor (CMR) applied to the Forschungszentrum Jülich LIF (FZJ-LIF) instrument in use at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber). Besides dedicated experiments in synthetic air, the new technique was extensively tested during the year-round Jülich Atmospheric Chemistry Project (JULIAC) campaign, in which ambient air was continuously flowed into the SAPHIR chamber. It allowed for performing OH measurement comparisons with differential optical absorption spectroscopy (DOAS) and investigation of interferences in a large variety of chemical and meteorological conditions. Good agreement was obtained in the LIF–DOAS intercomparison within instrumental accuracies (18 % for LIF and 6.5 % for DOAS) which confirms that the new chemical modulation system of the FZJ-LIF instrument is suitable for measurement of interference-free OH concentrations under the conditions of the JULIAC campaign (rural environment). Known interferences from O3+H2O and the nitrate radical (NO3) were quantified with the CMR in synthetic air in the chamber and found to be 3.0×105 and 0.6×105 cm−3, respectively, for typical ambient-air conditions (O3=50 ppbv, H2O = 1 % and NO3=10 pptv). The interferences measured in ambient air during the JULIAC campaign in the summer season showed a median diurnal variation with a median maximum value of 0.9×106 cm−3 during daytime and a median minimum value of 0.4×106 cm−3 at night. The highest interference of 2×106 cm−3 occurred in a heat wave from 22 to 29 August, when the air temperature and ozone increased to 40 ∘C and 100 ppbv, respectively. All observed interferences could be fully explained by the known O3+H2O interference, which is routinely corrected in FZJ-LIF measurements when no chemical modulation is applied. No evidence for an unexplained interference was found during the JULIAC campaign. A chemical model of the CMR was developed and applied to estimate the possible perturbation of the OH transmission and scavenging efficiency by reactive atmospheric trace gases. These can remove OH by gas phase reactions in the CMR or produce OH by non-photolytic reactions, most importantly by the reaction of ambient HO2 with NO. The interfering processes become relevant at high atmospheric OH reactivities. For the conditions of the JULIAC campaign with OH reactivities below 20 s−1, the influence on the determination of ambient OH concentrations was small (on average: 2 %). However, in environments with high OH reactivities, such as in a rain forest or megacity, the expected perturbation in the currently used chemical modulation reactor could be large (more than a factor of 2). Such perturbations need to be carefully investigated and corrected for the proper evaluation of OH concentrations when applying chemical scavenging. This implies that chemical modulation, which was developed to eliminate interferences in ambient OH measurements, itself can be subject to interferences that depend on ambient atmospheric conditions.
Abstract. Ambient measurements of nitryl chloride (ClNO2) were performed at a rural site in Germany, covering three periods in winter, summer, and autumn 2019, as part of the JULIAC campaign (Jülich Atmospheric Chemistry Project) that aimed to understand the photochemical processes in air masses typical of midwestern Europe. Measurements were conducted at 50 m aboveground, which was mainly located in the nocturnal boundary layer and thus uncoupled from local surface emissions. ClNO2 is produced at night by the heterogeneous reaction of dinitrogen pentoxide (N2O5) on chloride (Cl−) that contains aerosol. Its photolysis during the day is of general interest, as it produces chlorine (Cl) atoms that react with different atmospheric trace gases to form radicals. The highest-observed ClNO2 mixing ratio was 1.6 ppbv (parts per billion by volume; 15 min average) during the night of 20 September. Air masses reaching the measurement site either originated from long-range transport from the southwest and had an oceanic influence or circulated in the nearby region and were influenced by anthropogenic activities. Nocturnal maximum ClNO2 mixing ratios were around 0.2 ppbv if originating from long-range transport in nearly all seasons, while the values were higher, ranging from 0.4 to 0.6 ppbv for regionally influenced air. The chemical composition of long-range transported air was similar in all investigated seasons, while the regional air exhibited larger differences between the seasons. The N2O5 necessary for ClNO2 formation comes from the reaction of nitrate radicals (NO3) with nitrogen dioxide (NO2), where NO3 itself is formed by a reaction of NO2 with ozone (O3). Measured concentrations of ClNO2, NO2, and O3 were used to quantify ClNO2 production efficiencies, i.e., the yield of ClNO2 formation per NO3 radical formed, and a box model was used to examine the idealized dependence of ClNO2 on the observed nocturnal O3 and NO2 concentrations. Results indicate that ClNO2 production efficiency was most sensitive to the availability of NO2 rather than that of O3 and increased with decreasing temperature. The average ClNO2 production efficiency was highest in February and September, with values of 18 %, and was lowest in December, with values of 3 %. The average ClNO2 production efficiencies were in the range of 3 % and 6 % from August to November for air masses originating from long-range transportation. These numbers are at the high end of values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
Abstract. Ambient measurements of nitryl chloride (ClNO2) were performed at a rural site in Germany covering 3 periods in winter, summer, and autumn 2019 as part of the JULIAC campaign (Jülich Atmospheric Chemistry Project) that aimed for understanding the photochemical processes in air masses typical for mid-west Europe. Measurements were conducted at 50 m above ground, which was most located mainly at the nocturnal boundary layer and thus uncoupled from local surface emissions. ClNO2 is produced at nighttime by heterogeneous reaction of dinitrogen pentoxide (N2O5) on chloride ion (Cl-) containing aerosol. Its photolysis at day is of general interest as it produces chlorine (Cl) atoms that react with different atmospheric trace gases forming radicals. The highest observed ClNO2 mixing ratio was 1.6 ppbv (15-min average) in the middle of one night in September. Air masses reaching the measurement site either originated from long-range transport from the southwest and had an oceanic influence or circulated in the nearby region and were influenced by anthropogenic activities. Nocturnal maximum ClNO2 mixing ratios were around 0.2 ppbv if originating from long-range transport in nearly all seasons, while values were higher ranging from 0.4 to 0.6 ppbv for regionally influenced air. The chemical composition of long-range transported air was similar in all investigated seasons, while the regional air exhibited larger differences between the seasons. The N2O5 necessary for ClNO2 formation comes from the reaction of nitrate radicals (NO3) with nitrogen dioxide (NO2), where NO3 itself is formed by reaction of NO2 with ozone (O3). Measured concentrations of ClNO2, NO2 and O3 were used to quantify ClNO2 production efficiencies, i.e., the yield of ClNO2 formation per NO3 radical formed, and a box model was used to examine the idealized dependence of ClNO2 on the observed nocturnal O3 and NO2 concentrations. Results indicate that ClNO2 production efficiency was most sensitive to the availability of NO2 rather than that of O3 and increase with decreasing temperature. The average ClNO2 production efficiency was highest in February and September with values of 18 % and was lowest in December with values of 3 %. The average ClNO2 production efficiencies were in the range of 3 and 6 % from August to November for air masses originating from long-range transportation. These numbers are at the high end of values reported in literature indicating the importance of ClNO2 chemistry in rural environments in mid-west Europe.
Abstract. Precise and accurate hydroxyl radical (OH) measurements are essential to investigate how trace gases are oxidized and transformed in the troposphere and how secondary pollutants like ozone (O3) are formed. Laser induced fluorescence (LIF) is a widely used technique for the measurement of ambient OH radicals and was used for the majority of field campaigns and chamber experiments. Recently, most LIF instruments in use for atmospheric measurements of OH radicals introduced chemical modulation to separate the ambient OH radical concentration from possible interferences by chemically removing ambient OH radicals before they enter the detection cell. In this study, we describe the application, characterization, and validation of a chemical modulation reactor (CMR) applied to the Forschungszentrum Jülich LIF (FZJ-LIF) instrument in use at the atmospheric simulation chamber SAPHIR. Besides dedicated experiments in synthetic air, the new technique was extensively tested during the year-round Jülich Atmospheric Chemistry Project (JULIAC) campaign, in which ambient air was continuously flowed into the SAPHIR chamber. It allowed performing OH measurement comparisons with Differential Optical Absorption Spectroscopy (DOAS) and investigation of interferences in a large variety of chemical and meteorological conditions. A good agreement was obtained in the LIF DOAS intercomparison within instrumental accuracies (18 % for LIF, 6.5 % for DOAS) which confirms that the new chemical modulation system of the FZJ-LIF instrument is suitable for measurement of interference-free OH concentrations. Known interferences from O3 + H2O and the nitrate radical (NO3) were quantified with the CMR in synthetic air in the chamber and found to be 3.0 × 105 cm-3 and 0.6 × 105 cm-3, respectively, for typical ambient air condition (O3 = 50 ppbv, H2O = 1 %, NO3 = 10 pptv). The interferences measured in ambient air during the JULIAC campaign in summer season had the median diurnal variation of the interference with a maximum daytime value of 0.9 × 106 cm-3 and a minimum nighttime value of 0.4 × 106 cm-3. The highest interference of 2 × 106 cm-3 occurred in a heat wave from 22–29 August, when the air temperature and ozone increased to 40 °C and 100 ppbv, respectively. All observed interferences could be fully explained by the known O3 + H2O interference, which is routinely corrected in FZJ-LIF measurements when no chemical modulation is applied. No evidence for unexplained interference was found during the JULIAC campaign. A kinetic chemical model of the chemical modulation reactor was developed and applied to estimate the possible perturbation of the OH transmission and scavenging efficiency by reactive atmospheric trace gases. These can remove OH by gas phase reactions in the reactor, or produce OH by non-photolytical reactions, most importantly by the reaction of ambient HO2 with NO. The interfering processes become relevant at high atmospheric OH reactivities. For the conditions of the JULIAC campaign with OH reactivities below 20 s-1, the influence on the determination of ambient OH concentrations was small (on average: 2 %). However, in environments with high OH reactivities, such as in a rain forest or megacity, the expected perturbation in the currently used chemical modulation reactor could be large (more than a factor of 2) and would need careful analysis and correction. This implies that chemical modulation, which was developed to eliminate interferences in ambient OH measurements, itself can be subject to interferences that depend on ambient atmospheric conditions.
Background: A foodborne disease outbreak among wedding attendees from Makunsar village, Palghar district, Maharashtra state, India, was reported on February 18, 2018. Objectives: The outbreak investigation was conducted to find out the epidemiology of the outbreak and to identify the etiologic agent and risk factors. Methods: A case–control study was carried out, where cases (patients), controls, and food handlers were interviewed and leftover foods were collected for culture. A case was defined as a person having vomiting or diarrhea (i.e., ≥3 loose stools within 24 h) who attended the wedding ceremony at Makunsar village, Palghar district, Maharashtra, on February 18, 2018. Attack rate and odds ratio (OR) were calculated with 95% confidence intervals (CIs). Results: Out of 75 cases, 63% were female. Altogether, forty-two (56%) cases were hospitalized, and later on, all of them were discharged from hospital without any mortality. About 93%, 68%, 43%, and 41% of the cases reported with vomiting, nausea, abdominal pain, and diarrhea, respectively. The median incubation period was found to be 4 h (range: 2–8 h). Eating gaajar halwa (carrot pudding) was significantly associated with illness (OR: 12.8; 95% CI: 3.5–46). Gaajar halwa is prepared with khoa , a perishable milk product. The gaajar halwa culture yielded no growth. Conclusion: The case-patients’ clinical presentation and incubation period were consistent with enterotoxin-producing Staphylococcus aureus as the probable etiologic agent. The epidemiologic investigation identified the probable etiologic agent and food source in a low-resource community setting. Community food handlers were educated on food preparation hygiene and safe storage measures to prevent future outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.