A microfluidic chip developed to study the effects of free-drug versus NPs-mediated drug delivery on cancer cells using their electromechanical biomarkers.
Detection of a few cancer cells within a complex cellular mixture is a key challenge presented by clinical human biopsy samples. We have designed and tested a microfabricated bioimpedance device that can detect a few human MDA-MB-231 breast cancer cells in a mixed cell culture model of a breast tissue sample. The normal tissue components were modelled using non-cancerous MCF10A human breast epithelial cells and normal human HS68 fibroblasts. The sensor is a silicon chip 0.5 cm in diameter that contains one counter electrode and four 40 μm-wide multi-branched sensing electrodes. The cells' bioimpedances were characterized in pure monocultures and in mixed cell cultures following a brief cultivation on the sensor. After cell seeding, a stable bioimpedance signal was achieved indicative of cell attachment. A cancer-selective bioimpedance signal was elicited by addition of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor with selective actions on the cytoskeleton in breast cancer cells. SAHA elicited a 50% rise in peak bioimpedance in MDA-MB-231 breast cancer cells by 15 h. In mixed cultures of MDA-MB-231, MCF10A, and HS68 cells, the contribution of cancer cells present in the mixture dominated impedance response to SAHA. A single adherent cancer cell on any one of four electrodes in a background of ∼100 normal cells resulted in ≥5% increase in bioimpedance. The estimated sensitivity of this device is therefore one cancer cell among a background of 400 normal cells or the equivalent of 25 cancer cells in a biopsy sample of 10 000 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.