This article has earned an open data badge "Reproducible Research" for making publicly available the code necessary to reproduce the reported results. The results reported in this article were reproduced partially due to their computational complexity.
In reliability theory, diagnostic accuracy, and clinical trials, the quantity [Formula: see text], also known as the Probabilistic Index (PI), is a common treatment effect measure when comparing two groups of observations. The quantity [Formula: see text], a linear transformation of PI known as the net benefit, has also been advocated as an intuitively appealing treatment effect measure. Parametric estimation of PI has received a lot of attention in the past 40 years, with the formulation of the Uniformly Minimum-Variance Unbiased Estimator (UMVUE) for many distributions. However, the non-parametric Mann–Whitney estimator of the PI is also known to be UMVUE in some situations. To understand this seeming contradiction, in this paper a systematic comparison is performed between the non-parametric estimator for the PI and parametric UMVUE estimators in various settings. We show that the Mann–Whitney estimator is always an unbiased estimator of the PI with univariate, completely observed data, while the parametric UMVUE is not when the distribution is misspecified. Additionally, the Mann–Whitney estimator is the UMVUE when observations belong to an unrestricted family. When observations come from a more restrictive family of distributions, the loss in efficiency for the non-parametric estimator is limited in realistic clinical scenarios. In conclusion, the Mann–Whitney estimator is simple to use and is a reliable estimator for the PI and net benefit in realistic clinical scenarios.
The method of generalized pairwise comparisons (GPC) is a multivariate extension of the well-known non-parametric Wilcoxon-Mann-Whitney test. It allows comparing two groups of observations based on multiple hierarchically ordered endpoints, regardless of the number or type of the latter. The summary measure, "net benefit," quantifies the difference between the probabilities that a random observation from one group is doing better than an observation from the opposite group. The method takes into account the correlations between the endpoints. We have performed a simulation study for the case of two hierarchical endpoints to evaluate the impact of their correlation on the type-I error probability and power of the test based on GPC. The simulations show that the power of the GPC test for the primary endpoint is modified if the secondary endpoint is included in the hierarchical GPC analysis. The change in power depends on the correlation between the endpoints. Interestingly, a decrease in power can occur, regardless of whether there is any marginal treatment effect on the secondary endpoint. It appears that the overall power of the hierarchical GPC procedure depends, in a complex manner, on the entire variance-covariance structure of the set of outcomes. Any additional factors (such as thresholds of clinical relevance, drop out, or censoring scheme) will also affect the power and will have to be taken into account when designing a trial based on the hierarchical GPC procedure.
Background Generalized pairwise comparisons (GPC) can be used to assess the Net Benefit of new treatments for rare diseases. We show the potential of GPC through simulations based on data from a natural history study in mucopolysaccharidosis type IIIA (MPS IIIA). Methods Using data from a historical series of untreated children with MPS IIIA aged 2 to 9 years at the time of enrolment and followed for 2 years, we performed simulations to assess the operating characteristics of GPC to detect potential (simulated) treatment effects on a multi-domain symptom assessment. Two approaches were used for GPC: one in which the various domains were prioritized, the other with all domains weighted equally. The Net Benefit was used as a measure of treatment effect. We used increasing thresholds of clinical relevance to reflect the magnitude of the desired treatment effects, relative to the standard deviation of the measurements in each domain. Results GPC were shown to have adequate statistical power (80% or more), even with small sample sizes, to detect treatment effects considered to be clinically worthwhile on a symptom assessment covering five domains (expressive language, daily living skills, and gross-motor, sleep and pain). The prioritized approach generally led to higher power as compared with the non-prioritized approach. Conclusions GPC of prioritized outcomes is a statistically powerful as well as a patient-centric approach for the analysis of multi-domain scores in MPS IIIA and could be applied to other heterogeneous rare diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.