In a recent article, it was shown that side-coupled photonic crystal (PhC) cavity arrays had dark and bright states depending upon the relative phase between the excitation optical sources. We show that the existence of dark and bright states in these arrays can be used to develop a phase detector, which can find applications in optical differential phase-shift-keying demodulation systems.
The performance of vertical cavity surface emitting lasers can be enhanced, while simplifying the fabrication process, by adopting a hybrid design using a photonic-crystal (PhC) top mirror. In this paper, we analyze the performance of photonic-crystal surface emitting lasers (PCSELs) by varying the number of periods in the PhC mirror and estimating its reflectivity and lateral radiation losses. We consider three types of PhC mirrors: a simply periodic structure, a structure with a constant period but a variable filling factor (FF), and a structure with a constant FF but a variable period. We show that lateral losses can pose a serious limitation on the minimum size required to achieve an efficient PCSEL operation. We also show that our special structure can convert vertically emitted light into an in-plane light that propagates in the same plane as the PhC mirror creating the possibility of coupling vertically emitted light into optical waveguides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.