BackgroundDeficits of kinesthesia (limb position and movement sensation) commonly limit sensorimotor function and its recovery after neuromotor injury. Sensory substitution technologies providing synthetic kinesthetic feedback might re-establish or enhance closed-loop control of goal-directed behaviors in people with impaired kinesthesia.MethodsAs a first step toward this goal, we evaluated the ability of unimpaired people to use vibrotactile sensory substitution to enhance stabilization and reaching tasks. Through two experiments, we compared the objective and subjective utility of two forms of supplemental feedback – limb state information or hand position error – to eliminate hand position drift, which develops naturally during stabilization tasks after removing visual feedback.ResultsExperiment 1 optimized the encoding of limb state feedback; the best form included hand position and velocity information, but was weighted much more heavily toward position feedback. Upon comparing optimal limb state feedback vs. hand position error feedback in Experiment 2, we found both encoding schemes capable of enhancing stabilization and reach performance in the absence of vision. However, error encoding yielded superior outcomes - objective and subjective - due to the additional task-relevant information it contains.ConclusionsThe results of this study have established the immediate utility and relative merits of two forms of vibrotactile kinesthetic feedback in enhancing stabilization and reaching actions performed with the arm and hand in neurotypical people. These findings can guide future development of vibrotactile sensory substitution technologies for improving sensorimotor function after neuromotor injury in survivors who retain motor capacity, but lack proprioceptive integrity in their more affected arm.Electronic supplementary materialThe online version of this article (doi:10.1186/s12984-017-0248-8) contains supplementary material, which is available to authorized users.
Body–machine interfaces (BMIs) provide a non-invasive way to control devices. Vibrotactile stimulation has been used by BMIs to provide performance feedback to the user, thereby reducing visual demands. To advance the goal of developing a compact, multivariate vibrotactile display for BMIs, we performed two psychophysical experiments to determine the acuity of vibrotactile perception across the arm. The first experiment assessed vibration intensity discrimination of sequentially presented stimuli within four dermatomes of the arm (C5, C7, C8, and T1) and on the ulnar head. The second experiment compared vibration intensity discrimination when pairs of vibrotactile stimuli were presented simultaneously vs. sequentially within and across dermatomes. The first experiment found a small but statistically significant difference between dermatomes C7 and T1, but discrimination thresholds at the other three locations did not differ. Thus, while all tested dermatomes of the arm and hand could serve as viable sites of vibrotactile stimulation for a practical BMI, ideal implementations should account for small differences in perceptual acuity across dermatomes. The second experiment found that sequential delivery of vibrotactile stimuli resulted in better intensity discrimination than simultaneous delivery, independent of whether the pairs were located within the same dermatome or across dermatomes. Taken together, our results suggest that the arm may be a viable site to transfer multivariate information via vibrotactile feedback for body–machine interfaces. However, user training may be needed to overcome the perceptual disadvantage of simultaneous vs. sequentially presented stimuli.
We examined vibrotactile stimulation as a form of supplemental limb state feedback to enhance planning and ongoing control of goal-directed movements. Subjects wore a two-dimensional vibrotactile display on their nondominant arm while performing horizontal planar reaching with the dominant arm. The vibrotactile display provided feedback of hand position such that small hand displacements were more easily discriminable using vibrotactile feedback than with intrinsic proprioceptive feedback. When subjects relied solely on proprioception to capture visuospatial targets, performance was degraded by proprioceptive drift and an expansion of task space. By contrast, reach accuracy was enhanced immediately when subjects were provided vibrotactile feedback and further improved over 2 days of training. Improvements reflected resolution of proprioceptive drift, which occurred only when vibrotactile feedback was active, demonstrating that benefits of vibrotactile feedback are due, in part to its integration into the ongoing control of movement. A partial resolution of task space expansion persisted even when vibrotactile feedback was inactive, demonstrating that training with vibrotactile feedback also induced changes in movement planning. However, the benefits of vibrotactile feedback come at a cognitive cost. All subjects adopted a stereotyped strategy wherein they attempted to capture targets by moving first along one axis of the vibrotactile display and then the other. For most subjects, this inefficient approach did not resolve over two bouts of training performed on separate days, suggesting that additional training is needed to integrate vibrotactile feedback into the planning and online control of goal-directed reaching in a way that promotes smooth and efficient movement. NEW & NOTEWORTHY A two-dimensional vibrotactile display provided state (not error) feedback to enhance control of a moving limb. Subjects learned to use state feedback to perform blind reaches with accuracy and precision exceeding that attained using intrinsic proprioception alone. Feedback utilization incurred substantial cognitive cost: subjects moved first along one axis of the vibrotactile display, then the other. This stereotyped control strategy must be overcome if vibrotactile limb state feedback is to promote naturalistic limb movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.