The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pressing public health systems around the world, and large population testing is a key step to control this pandemic disease. Here, we develop a high-throughput targeted proteomics assay to detect SARS-CoV-2 nucleoprotein peptides directly from nasopharyngeal and oropharyngeal swabs. A modified magnetic particle-based proteomics approach implemented on a robotic liquid handler enables fully automated preparation of 96 samples within 4 hours. A TFC-MS system allows multiplexed analysis of 4 samples within 10 min, enabling the processing of more than 500 samples per day. We validate this method qualitatively (Tier 3) and quantitatively (Tier 1) using 985 specimens previously analyzed by real-time RT-PCR, and detect up to 84% of the positive cases with up to 97% specificity. The presented strategy has high sample stability and should be considered as an option for SARS-CoV-2 testing in large populations.
Mesenchymal stem cells (MSC) display tumor tropism and have been addressed as vehicles for delivery of anti-cancer agents. As cellular components of the tumor microenvironment, MSC also influence tumor progression. However, the contribution of MSC in brain cancer is not well understood since either oncogenic or tumor suppressor effects have been reported for these cells. Here, MSC were found capable of stimulating human Glioblastoma (GBM) cell proliferation through a paracrine effect mediated by TGFB1. Moreover, when in direct cell-cell contact with GBM cells, MSC elicited an increased proliferative and invasive tumor cell behavior under 3D conditions, as well as accelerated tumor development in nude mice, independently of paracrine TGFB1. A secretome profiling of MSC-GBM co-cultures identified 126 differentially expressed proteins and 10 proteins exclusively detected under direct cell-cell contact conditions. Most of these proteins are exosome cargos and are involved in cell motility and tissue development. These results indicate a dynamic interaction between MSC and GBM cells, favoring aggressive tumor cell traits through alternative and independent mechanisms. Overall, these findings indicate that MSC may exert pro-tumorigenic effects when in close contact with tumor cells, which must be carefully considered when employing MSC in targeted cell therapy protocols against cancer.
The determination and identification of mycosporine-like amino acids (MAAs) from algae remain a major challenge due to the low concentration. Mass spectrometry (MS) can make an invaluable contribution in the search and identification of MAAs because of its high sensitivity, possibility of coupling with liquid chromatography, and the availability of powerful tandem mass spectrometric techniques. However, the unequivocal determination of the presence and location of important functional groups present on the basic skeleton of the MAAs is often elusive due to their inherent instability under MS conditions. In this study, the use of hydrogen/deuterium (H/D) exchange and electrospray ionisation tandem mass spectrometry (ESI-MS/MS) for characterisation of four MAAs (palythine, asterina, palythinol and shinorine) isolated from the macroalgae Gracilaria tenuistipitata Chang et Xia was investigated. The accurate-mass confirmation of the protonated molecules was performed on a Q-TOF instrument. We demonstrate that employing deuterium labelling in ESI-MS/MS analysis provides a convenient tool for the determination of new MAAs. Although the fragmentation patterns of MAAs were discussed earlier, to our knowledge, this is the first time that mechanisms are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.