In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.
A microstructured optical fiber with a single design parameter is proposed and demonstrated. In such a structure three thin, long glass webs join in the fiber center, forming its core. By changing the web thickness it is possible to tune the zero-dispersion wavelength from approximately 0.7 to >2.0 microm while keeping a tiny core area and single-mode guidance. Supercontinuum generation is shown in a silica fiber with a web thickness of 850 nm. The small core area and the massive hole area also make the structure very attractive for the sensing and study of fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.