The aim is to discuss the ultrasound technique applied to the inspection of resistance spot welding, and to demonstrate the advantages of this technique over the conventionally standardized destructive tests. For this, two experimental procedures were organized, the first using the a-scan (single element transducer) ultrasound technique, in which the effects of the indentation of the spot weld were studied, one of the parameters that can be easily detected by this technique. The second experiment seeks to demonstrate the detection capacity of the ultrasonic b-scan technique (matrix transducer), in which the methodology was applied to seek the correlation between the results obtained by the equipment with the results found in the peel test and also in the macrographic results conventionally known. With these experiments, it was possible to prove the reliability and reproducibility of this technique, showing an increase in precision when related to the normalized known tests, besides the quantitative evaluation that can be made, allowing the statistical collection of data.
For several decades, the electrical resistance spot welding process has been widely used in the manufacturing of sheet metal structures, especially in automotive bodies. During this period there was no significant development for this welding process. However, in recent years, in order to meet the demand for lighter, economical, and low-cost vehicles, the automotive manufacturing industry is undergoing a revolution in the use of high strength steel sheet combinations, chemical compositions, and of different thicknesses. In this context, the present work focuses on the study and development of a new resistant spot welding technology using additive manufacturing (AMSW) in zinc-coated steel sheets, used in the automotive industry. As a comparison, spot welding was also performed by the conventional resistance spot welding process (RSW). The results showed that the spot welding process using additive manufacturing (AMSW), through the optimized parameters, compared to the conventional resistance spot welding process (RSW), was 34.47% higher in relation to the shear tensile stress, as well as 28.57% higher tensile stress with a perpendicular load to the weld spot. The indentation or thermomechanical mark on the surface of the sheet was imperceptible to the visual inspection, producing a smooth face in the spot region.
This work is aimed at the analysis of the dynamic resistance, electrical energy and behavior of the force between electrodes (including thermal expansion) during welding at optimized parameters, referring to the process of spot welding using additive manufacturing (AMSW). For comparative purposes, this analysis also includes the conventional resistance spot welding process (RSW). The experiments were done on low carbon-zinc-coated sheets used in the automotive industry. The results regarding the welding process using additive manufacturing (AMSW), in comparison to the conventional resistance spot welding (RSW), showed that the dynamic resistance presented a different behavior due to the collapse of the deposition at the beginning of the welding, and that a smaller magnitude of electrical energy (approximately <3.35 times) is required to produce a welding spot approved in accordance with the norm. No force of thermal expansion was observed during the passage of the current, in contrast, there was a decrease in the force between the electrodes due to the collapse of the deposition at the beginning of the welding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.