BackgroundThe effects of chronic exposure to exercise training on vascular biomarkers
have been poorly explored.ObjectiveOur study aimed to compare the amounts of endothelial progenitor cells
(EPCs), and endothelial (EMP) and platelet (PMP) microparticles between
professional runners and healthy controls.MethodsTwenty-five half-marathon runners and 24 age- and gender-matched healthy
controls were included in the study. EPCs (CD34+/KDR+, CD133+/KDR+, and
CD34+/CD133+), EMP (CD51+) and PMP (CD42+/CD31+) were quantified by
flow-cytometry. All blood samples were obtained after 12 h of fasting and
the athletes were encouraged to perform their routine exercises on the day
before.ResultsAs compared with controls, the CD34+/KDR+ EPCs (p=0.038) and CD133+/KDR+ EPCs
(p=0.018) were increased, whereas CD34+/CD133+ EPCs were not different
(p=0.51) in athletes. In addition, there was no difference in MPs levels
between the groups.ConclusionChronic exposure to exercise in professional runners was associated with
higher percentage of EPCs. Taking into account the similar number of MPs in
athletes and controls, the study suggests a favorable effect of exercise on
these vascular biomarkers.
To evaluate the effects of long-term exposure to high-intensity training among professional runners on cardiac hypertrophy and subclinical atherosclerosis.Prospective study included runners of both sexes (n = 52) and age and gender matched controls (n = 57), without classical cardiovascular risk factors. Ventricular hypertrophy was quantified by echocardiography by linear method and carotid intima-media thickness (cIMT) by 2-D images obtained by ultrasonography. Endothelial function was evaluated by flow-mediated dilation (FMD). Steroid hormones were quantified by HPLC followed by LC-MS/MS. Higher left ventricular (LV) mass index was found in male athletes (p<0.0001 vs. other groups). When adjusted for gender, the degree of left ventricular mass index classified as mildly, moderately or severely abnormal was obtained in 26%, 35%, and 30%, respectively, of female athletes, and in 39%, 14%, and 21%, respectively, of male athletes. Higher ratio of the early (E) to late (A) ventricular filling velocities was found in athletes of both genders. Male athletes presented lower cIMT in the right (p = 0.012 vs. male controls) and left (p<0.0001 vs. male controls) common carotid arteries, without differences in cIMT between female athletes and controls. FMD results were similar among groups. Higher serum testosterone levels were found in male athletes (p<0.0001 vs. other groups) and they were correlated with LV mass (r = 0.50, p<0.0001). The chronic exposure of high-intensity training among professional runners of both genders was associated with increased ventricular mass and adaptive remodeling. Less subclinical atherosclerosis was found in male athletes. Differences in steroid hormones may account in part for these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.