Plant parasitic nematodes are one of the limiting factors for production of major crops worldwide. Overall, they cause an estimated annual crop loss of $78 billion worldwide and an average 10-15% crop yield losses. This imposes a challenge to sustainable production of food worldwide. Unsustainable cropping production with monocultures, intensive planting, and expansion of crops to newly opened areas has increased problems associated with nematodes. Thus, finding sustainable methods to control these pathogens is in current need. The correct diagnosis of nematode species is essential for choosing proper control methods and meaningful research. Morphology-based nematode taxonomy has been challenging due to intraspecific variation in characters. Alternatively, tools and methods based on biochemical and molecular markers have allowed successful diagnosis for a wide number of nematode species. Although these new methods have been useful due to their practical, fast, accuracy, and cost effective, the use of integrative diagnose, combining morphology, biochemical and molecular data is more appropriate when necessary to strength diagnose, define species boundaries, and to have a more suitable molecular database for nematode species. Here, we report a review on current methods and tools used to identify plant parasitic nematodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.