Plant defensins are a prominent family of cationic peptides in the plant kingdom. They are structurally and functionally related to defensins that have been previously characterized in mammals and insects. They present molecular masses between 5 and 7kDa and possess a pattern of eight conserved Cys residues. The three-dimensional structure of plant defensins is small and globular. It has three anti-parallel beta-sheets and one alpha-helix that is stabilized by a structural motif composed of disulfide bridges. This motif is found in other peptides with biological activity and is called the Cys stabilized alphabeta motif (CSalphabeta). Based on the growing knowledge on defensin structure, gene expression and regulation, and also their in vitro biological activity, it has become clear that plant defensins are complex and sophisticated peptides whose function extends beyond their role in defense of plants against microbial infection. This review discusses recent data and will present comprehensive information regarding the study of defensins.
Few ultrastructural differences were noted among the three species. These secretory structures not only protect the shoot apex, but also have taxonomic importance below the genus level.
BackgroundThionins are a family of plant antimicrobial peptides (AMPs), which participate in plant defense system against pathogens. Here we describe some aspects of the CaThi thionin-like action mechanism, previously isolated from Capsicum annuum fruits. Thionin-like peptide was submitted to antimicrobial activity assays against Candida species for IC50 determination and synergism with fluconazole evaluation. Viability and plasma membrane permeabilization assays, induction of intracellular ROS production analysis and CaThi localization in yeast cells were also investigated.ResultsCaThi had strong antimicrobial activity against six tested pathogenic Candida species, with IC50 ranging from 10 to 40 μg.mL−1. CaThi antimicrobial activity on Candida species was candidacidal. Moreover, CaThi caused plasma membrane permeabilization in all yeasts tested and induces oxidative stresses only in Candida tropicalis. CaThi was intracellularly localized in C. albicans and C. tropicalis, however localized in nuclei in C. tropicalis, suggesting a possible nuclear target. CaThi performed synergistically with fluconazole inhibiting all tested yeasts, reaching 100 % inhibition in C. parapsilosis. The inhibiting concentrations for the synergic pair ranged from 1.3 to 4.0 times below CaThi IC50 and from zero to 2.0 times below fluconazole IC50.ConclusionThe results reported herein may ultimately contribute to future efforts aiming to employ this plant-derived AMP as a new therapeutic substance against yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.