The electrochemical impedance spectroscopy (EIS) and corrosion behaviour of physical vapour deposited (PVD) TiAlN and TiCN coatings of 50 µm mesh shaped AISI 316 stainless steel were estimated under simulated marine conditions (3.5 wt. % NaCl solution). The coatings were prepared by creating adhesive Cr-CrN interlayer with the thickness of about 0.3 µm. The obtained thicknesses of produced coatings were measured to be in a range between 2 and 3.5 µm. The presence of protective coatings leads to corrosion potential (Ecorr ) shifting to more positive values as compared to the bare stainless steel. This effect indicates higher protection efficiency of coated steel under marine conditions. The protective behaviour of produced coating leads to the decreased corrosion current density (jcorr ) by indicating up to 40-fold higher polarization resistance as compared to resistance of the naturally formed oxide layer over the stainless steel. The Nyquist and Bode plots were obtained with the help of EIS measurements by applying alternating potential amplitude of 10 mV on observed Ecorr . The obtained plots were fitted by appropriate equivalent circuits to calculate pore resistance, charge transfer resistance and capacitance. The present study reveals that pore resistance was the highest in the case of TiCN coating (Rpore =3.22 kΩ·cm2). The increase in duration of the immersion up to 24 h leads to change in the capacitive behaviour of the coatings caused by the penetration of the aqueous solution into pore system of TiCN coating with low wettability and surface passivation of reactive TiAlN coating. The presence of defects was confirmed by examining the obtained samples with the help of the scanning electron microscope.
This case study presents the results of assessments of the potential risk of pollution by food waste in different applied shipping scenarios. A four-step model was used to analyse the applied procedures. The first step of the study involved the identification of possible strategies for on-board food waste management. In the second step, physicochemical tests of visually selected greywater detected high contents of nutrients (NTotal ≤ 238 mg·L−1 and PTotal ≤ 71 mg·L−1). Daily nutrient content (DNC) calculations of different food waste management scenarios allowed us to estimate the highest emission value from the discharge of greywater mixed with shredded food waste in the third step. In the final stage of the study, the results obtained made it possible to qualitatively assess the impact of DNC load on food waste management methods in the Baltic Sea environment. This study highlights the potential risk of polluting the Baltic Sea with nutrients and other contaminants in various scenarios, which will impact the marine recovery process. The presented research helps to outline waste management approaches for the reduction of these risks.
Failures of marine diesel engine components can lead to serious consequences for a vessel, cargo and the people on board a ship. These consequences can be financial losses, delay in delivery time or a threat to safety of the people on board. This is why it is necessary to learn about connecting rod bolt failures in order to prevent worst-case scenarios. This paper aims at determining the origin, velocity and the duration of fatigue crack development of a diesel alternator engine which suffered a significant failure of one of its mains, not long after a major overhaul had been completed and with less than 1000 running hours having elapsed. It was verified with fatigue rupture of one of the four connecting rod stud bolts. Tensile tests were performed in the remaining connecting rod bolts. During this procedure, another fatigue crack in an adjacent bolt was identified. The probable root case of damage, and at the end some final remarks are presented.
Diesel generator sets (DGU) are very widely used in autonomous power supply systems. An example is marine power plants, diesel locomotives with electric power transmission, uninterruptible power supply units, etc. The power of ship DGUs reaches 2–6 or more MW in one unit. The number of units on ships can be different, but, as a rule, at least two. In this paper, we propose a method of monitoring the dynamic electromechanical system “diesel synchronous generator”. The method aims at using a synchronous generator machine as a multifunctional accurate and sensitive sensor for diagnostic parameters of the electromechanical system. The proposed method of technical diagnostics is based on continuous monitoring of non-uniformity of diesel torque, fluctuations in the instantaneous angular velocity and instantaneous angular acceleration of the diesel crankshaft. These data are the results of a spectral analysis of stator currents and voltages of a synchronous generator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.