We survey theoretical and computational problems associated with the pricing and hedging of spread options. These options are ubiquitous in the financial markets, whether they be equity, fixed income, foreign exchange, commodities, or energy markets. As a matter of introduction, we present a general overview of the common features of all spread options by discussing in detail their roles as speculation devices and risk management tools. We describe the mathematical framework used to model them, and we review the numerical algorithms actually used to price and hedge them. There is already extensive literature on the pricing of spread options in the equity and fixed income markets, and our contribution is mostly to put together material scattered across a wide spectrum of recent textbooks and journal articles. On the other hand, information about the various numerical procedures that can be used to price and hedge spread options on physical commodities is more difficult to find. For this reason, we make a systematic effort to choose examples from the energy markets in order to illustrate the numerical challenges associated with these instruments. This gives us a chance to discuss an interesting application of spread options to an asset valuation problem after it is recast in the framework of real options. This approach is currently the object of intense mathematical research. In this spirit, we review the two major avenues to modeling energy price dynamics. We explain how the pricing and hedging algorithms can be implemented in the framework of models for both the spot price dynamics and the forward curve dynamics.
In this paper, we give a few methods for the choice of copulas in financial modelling.
This paper provides approximate formulas that generalize the Black-Scholes formula in all dimensions. Pricing and hedging of multivariate contingent claims are achieved by computing lower and upper bounds. These bounds are given in closed form in the same spirit as the classical one-dimensional Black-Scholes formula. Lower bounds perform remarkably well. Like in the onedimensional case, Greeks are also available in closed form. We discuss an extension to basket options with barrier.
This paper is concerned with the link between spot and implied volatilities. The main result is the derivation of the stochastic differential equation driving the spot volatility based on the shape of the implied volatility surface. This equation is a consequence of no-arbitrage constraints on the implied volatility surface right before expiry. We investigate the regularity of this surface at maturity in the case of the Constant Elasticity of Variance and Heston models. We also show that a simple way to link spot and implied volatilities is to relate the coefficients of the implied volatility surface Taylor expansion to the coefficients of a certain chaos expansion of the spot volatility process. As a byproduct, we give expansions for the implied volatility surface for a general stochastic volatility model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.