Nanodiamond in a 2–5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm−1 (at the 458-nm laser excitation) which shifts to 1630 cm−1 at the 257-nm laser excitation. Contrary to sp2-bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm−1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2–5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2–5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.
Phase diagrams of carbon, and those focusing on the graphite-to-diamond transitional conditions in particular, are of great interest for fundamental and applied research. The present study introduces a number of experiments carried out to convert graphite under high-pressure conditions, showing a formation of stable phase of fullerene-type onions cross-linked by sp-bonds in the 55-115 GPa pressure range instead of diamonds formation (even at temperature 2000-3000 K) and the already formed diamonds turn into carbon onions. Our results refute the widespread idea that diamonds can form at any pressure from 2.2 to 1000 GPa. The phase diagram built within this study allows us not only to explain the existing numerous experimental data on the formation of diamond from graphite, but also to make assumptions about the conditions of its growth in Earth's crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.