SummaryBlood-derived adult stem cells were previously considered impractical for therapeutic use because of their small numbers. This report describes the isolation of a novel human cell population derived from the peripheral blood, termed synergetic cell population (SCP) Neural cell precursors (NCPs) expressed the neuronal markers Nestin, bIII-Tubulin, and Neu-N, the glial markers GFAP and O4, and responded to neurotransmitter stimulation. Myocardial cell precursors (MCPs) expressed Desmin, cardiac Troponin and Connexin 43. In conclusion, the simple and rapid method of SCP generation and the resulting considerable quantities of lineage-specific precursor cells makes it a potential source of autologous treatment for a variety of diseases.
Background: We recently isolated angiogenic cell precursors (ACPs) from human blood, which can induce angiogenesis in vitro. Aims: In the present study, we used a nude rat model of ischaemic cardiomyopathy to compare the efficacy of intramyocardial and intracoronary ACP implantation, and to evaluate effects on cardiac function, scar size and angiogenesis. Methods and results: Adult nude rats underwent coronary artery ligation. Six days later, ACPs (characterized in vitro prior to implantation) or culture media were injected directly into the ischaemic myocardial region or into the coronary artery via the aorta. Cardiac function was measured by echocardiography prior to and at 2 and 4 weeks after implantation. Scar morphology, cell engraftment, and myocardial angiogenesis were evaluated at 4 weeks. Two and four weeks after implantation, cardiac function declined in both of the control groups but improved in both the intramyocardial and intracoronary ACP groups. Significant reductions in myocardial scar area were only observed in the intramyocardial ACP group, while increases in blood vessel density, which were observed in all ACP recipients, were greatest in the intracoronary ACP group. Conclusions: Human ACPs, delivered via intramyocardial or intracoronary injection, engrafted into damaged cardiac tissue and improved cardiac function within 4 weeks through effects on scar morphology and blood vessel formation.
Peripheral blood is an easily accessed source for stem cell production; however, the number of cells produced is relatively low. We hypothesized that ischemic preconditioning may serve as a safe method to increase the number of CD34+ cells that can be harvested and cultured in a short period. This study was conducted to test this hypothesis by examining the safety and efficacy of brief, transient ischemia of the lower limbs to augment the number of cells that can be produced from blood of healthy volunteers. Following induction of ischemia, blood samples were withdrawn at baseline, 30 min, 12 h and 24 h. The number of progenitor cells was determined by flow cytometry after the harvested cells were cultured for 5 days. We also analyzed the blood samples to determine IL-8 and VEGF concentrations. No serious adverse events were observed. The total number of cells increased from 0.46 ± 0.1 × 10(6) cells/ml in the pretreatment blood samples to 0.7 ± 0.1 × 10(6) cells/ml in blood taken 12 h after the conclusion of transient ischemia, p = 0.0029. The number of CD34+ cells increased from 4.23 ± 0.8 × 10(4) cells/ml in the pretreatment samples to 7.17 ± 1.34 × 10(4) cells/ml in blood taken 12 h after ischemia, p = 0.0001. The harvested stem cells maintained their ability to construct tubular structures. The augmentation in the number of CD34+ cells was positively correlated with the increase of IL-8, but not with VEGF concentrations. Ischemic preconditioning is a safe and effective technique to increase the availability of stem cells for therapeutic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.