The hexameric, barrel-forming, AAA+ protease Lon is critical for maintaining mitochondrial matrix protein homeostasis. Efficient substrate processing by Lon requires the coordinated action of six protomers. Despite Lon’s importance for human health, the molecular bases for Lon’s substrate recognition and processing remain unclear. Here, we use a combination of biochemistry and electron cryomicroscopy (cryo-EM) to unveil the structural and functional basis for full-length human mitochondrial Lon’s degradation of mitochondrial transcription factor A (TFAM). We show how opposing protomers in the Lon hexamer barrel interact through their N-terminal domains to give what resembles three feet above the barrel and help to form a triangular pore located just above the entry pore to the barrel. The interactions between opposing protomers constitute a primary allosteric regulation of Lon activity. A secondary allosteric regulation consists of an inter-subunit signaling element in the ATPase domains. By considering the ATP or ADP load in each protomer, we show how this dual allosteric mechanism in Lon achieves coordinated ATP hydrolysis and substrate processing. This mechanism enforces sequential anti-clockwise ATP hydrolysis resulting in a coordinated hand-over-hand translocation of the substrate towards the protease active sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.