IntroductionTransplanted human hematopoietic stem cells must retain specific adhesive capacity to interact with the vascular endothelium that lines the bone marrow (BM) (1-3). The mechanisms by which these cells home to and engraft the BM are still obscure. Murine hematopoietic progenitors (HPCs) have been shown to interact in vivo with both P-selectin and E-selectin on vascular endothelium of murine BM (4). In addition, VCAM-1 has been shown to support rolling of HPC on BM endothelium in the absence of endothelial selectins (4). Nevertheless, optimal recruitment of HPC to the BM requires the combined action of both selectins and VCAM-1 (5). Thus, the initiation of primary rolling adhesion of blood-borne cells to the lining of the BM microvessels under shear flow is critical for the recruitment of HPC to the BM. HPC rolling on BM endothelium is likely to be accompanied by a coordinated sequence of adhesive and activation events leading to cell arrest, a key step in the successful extravasation of blood-borne cells to extravascular beds (6, 7). In these prior studies, the mechanisms by which HPCs develop firm adhesion to BM endothelium in the presence of physiological shear flow have not been elucidated.We recently established a key role for the chemokine SDF-1 and its receptor CXCR4 in murine BM engraftment by human severe combined immunodeficiency (SCID) repopulating stem cells (8). In light of the growing evidence that chemokines can regulate the arrest of leukocytes on blood vessels through integrin-dependent interactions with IgSF ligands, we asked whether SDF-1 regulates CD34 + progenitors interaction with BM endothelium, and if so, how. We now report that human BM endothelium constitutively expresses high levels of SDF-1. Using in vitro flow chamber assays, we have tested the specific effects of SDF-1 on the ability of human cord blood CD34 + progenitors to initiate rolling interactions and arrest on human vascular endothelium and on isolated endothelial receptors, including E-selectin, P-selectin, ICAM-1, and VCAM-1, which have all been shown to be constitutively expressed on both murine and human BM endothelium (9). Our results suggest that SDF-1 is a key player The chemokine SDF-1 plays a central role in the repopulation of the bone marrow (BM) by circulating CD34 + progenitors, but the mechanisms of its action remain obscure. To extravasate to target tissue, a blood-borne cell must arrest firmly on vascular endothelium. Murine hematopoietic progenitors were recently shown in vivo to roll along BM microvessels that display selectins and integrins. We now show that SDF-1 is constitutively expressed by human BM endothelium. In vitro, human CD34 + cells establish efficient rolling on P-selectin, E-selectin, and the CD44 ligand hyaluronic acid under physiological shear flow. ICAM-1 alone did not tether CD34 + cells under flow, but, in the presence of surface-bound SDF-1, CD34 + progenitors rolling on endothelial selectin rapidly developed firm adhesion to the endothelial surface, mediated by an interaction ...
It is widely believed that rolling lymphocytes require successive chemokine-induced signaling for lymphocyte function-associated antigen 1 (LFA-1) to achieve a threshold avidity that will mediate lymphocyte arrest. Using an in vivo model of lymphocyte arrest, we show here that LFA-1-mediated arrest of lymphocytes rolling on high endothelial venules bearing LFA-1 ligands and chemokines was abrupt. In vitro flow chamber models showed that endothelium-presented but not soluble chemokines triggered instantaneous extension of bent LFA-1 in the absence of LFA-1 ligand engagement. To support lymphocyte adhesion, this extended LFA-1 conformation required immediate activation by its ligand, intercellular adhesion molecule 1. These data show that chemokine-triggered lymphocyte adhesiveness involves a previously unrecognized extension step that primes LFA-1 for ligand binding and firm adhesion.
Dendritic cells (DCs) are recruited from blood into tissues to patrol for foreign antigens. After antigen uptake and processing, DCs migrate to the secondary lymphoid organs to initiate immune responses. We now show that DC-SIGN, a DC-specific C-type lectin, supports tethering and rolling of DC-SIGN-positive cells on the vascular ligand ICAM-2 under shear flow, a prerequisite for emigration from blood. The DC-SIGN-ICAM-2 interaction regulates chemokine-induced transmigration of DCs across both resting and activated endothelium. Thus, DC-SIGN is central to the unusual trafficking capacity of DCs, further supported by the expression of DC-SIGN on precursors in blood and on immature and mature DCs in both peripheral and lymphoid tissues.
Lymphocyte motility in lymph nodes is regulated by chemokines, but the contribution of integrins to this motility remains obscure. Here we examined lymphocyte migration over CCR7-binding chemokines that 'decorate' lymph node stroma. In a shear-free environment, surface-bound lymph node chemokines but not their soluble counterparts promoted robust and sustained T lymphocyte motility. The chemokine CCL21 induced compartmentalized clustering of the integrins LFA-1 and VLA-4 in motile lymphocytes, but both integrins remained nonadhesive to ligands on lymphocytes, dendritic cells and stroma. The application of shear stress to lymphocytes interacting with CCL21 and integrin ligands promoted robust integrin-mediated adhesion. Thus, lymph node chemokines that promote motility and strongly activate lymphocyte integrins under shear forces fail to stimulate stable integrin adhesiveness in extravascular shear-free environments.
Leukocyte recruitment to target tissue is initiated by weak rolling attachments to vessel wall ligands followed by firm integrin-dependent arrest triggered by endothelial chemokines. We show here that immobilized chemokines can augment not only arrest but also earlier integrin-mediated capture (tethering) of lymphocytes on inflamed endothelium. Furthermore, when presented in juxtaposition to vascular cell adhesion molecule 1 (VCAM-1), the endothelial ligand for the integrin very late antigen 4 (VLA-4, α4β1), chemokines rapidly augment reversible lymphocyte tethering and rolling adhesions on VCAM-1. Chemokines potentiate VLA-4 tethering within <0.1 s of contact through Gi protein signaling, the fastest inside-out integrin signaling events reported to date. Although VLA-4 affinity is not altered upon chemokine signaling, subsecond VLA-4 clustering at the leukocyte-substrate contact zone results in enhanced leukocyte avidity to VCAM-1. Endothelial chemokines thus regulate all steps in adhesive cascades that control leukocyte recruitment at specific vascular beds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.