Robotic assembly planning has the potential to profoundly change how buildings can be designed and created. It enables architects to explicitly account for the assembly process already during the design phase, and enables efficient building methods that profit from the robots' different capabilities. Previous work has addressed planning of robot assembly sequences and identifying the feasibility of architectural designs. This paper extends previous work by enabling assembly planning with large, heterogeneous teams of robots. We present a scalable planning system which enables parallelization of complex task and motion planning problems by iteratively solving smaller sub-problems. Combining optimization methods to solve for manipulation constraints with a sampling-based bi-directional space-time path planner enables us to plan cooperative multirobot manipulation with unknown arrival-times. Thus, our solver allows for completing sub-problems and tasks with differing timescales and synchronizes them effectively. We demonstrate the approach on multiple case-studies and on two long-horizon building assembly scenarios to show the robustness and scalability of our algorithm.
Robotic construction assembly planning aims to find feasible assembly sequences as well as the corresponding robotpaths and can be seen as a special case of task and motion planning (TAMP). As construction assembly can well be parallelized, it is desirable to plan for multiple robots acting concurrently. Solving TAMP instances with many robots and over a long time-horizon is challenging due to coordination constraints, and the difficulty of choosing the right task assignment. We present a planning system which enables parallelization of complex task and motion planning problems by iteratively solving smaller subproblems. Combining optimization methods to jointly solve for manipulation constraints with a sampling-based bi-directional space-time path planner enables us to plan cooperative multi-robot manipulation with unknown arrival-times. Thus, our solver allows for completing subproblems and tasks with differing timescales and synchronizes them effectively. We demonstrate the approach on multiple construction case-studies to show the robustness over long planning horizons and scalability to many objects and agents. Finally, we also demonstrate the execution of the computed plans on two robot arms to showcase the feasibility in the real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.