Context. Outflows are one of the first signposts of ongoing star formation. The fastest molecular component to the protostellar outflows -extremely high-velocity (EHV) molecular jets -are still puzzling since they are seen only rarely. As they originate deep inside the embedded protostar-disk system, they provide vital information about the outflow-launching process in the earliest stages. Aims. The first aim is to analyze the interaction between the EHV jet and the slow outflow by comparing their outflow force content. The second aim is to analyze the chemical composition of the different outflow velocity components and to reveal the spatial location of molecules. Methods. ALMA 3 mm (Band 3) and 1.3 mm (Band 6) observations of five outflow sources at 0 . 3 -0 . 6 (130 -260 au) resolution in the Serpens Main cloud are presented. Observations of CO, SiO, H 2 CO and HCN reveal the kinematic and chemical structure of those flows. Three velocity components are distinguished: the slow and the fast wing, and the EHV jet. Results. Out of five sources, three have the EHV component. Comparison of outflow forces reveals that only the EHV jet in the youngest source Ser-emb 8 (N) has enough momentum to power the slow outflow. The SiO abundance is generally enhanced with velocity, while HCN is present in the slow and the fast wing, but disappears in the EHV jet. For Ser-emb 8 (N), HCN and SiO show a bow-shock shaped structure surrounding one of the EHV peaks suggesting sideways ejection creating secondary shocks upon interaction with the surroundings. Also, the SiO abundance in the EHV gas decreases with distance from this protostar, whereas that in the fast wing increases. H 2 CO is mostly associated with low-velocity gas but also appears surprisingly in one of the bullets in the Ser-emb 8 (N) EHV jet. No complex organic molecules are found to be associated with the outflows. Conclusions. The high detection rate suggests that the presence of the EHV jet may be more common than previously expected. The EHV jet alone does not contain enough outflow force to explain the entirety of the outflowing gas. The origin and temporal evolution of the abundances of SiO, HCN and H 2 CO through high-temperature chemistry are discussed. The data are consistent with a low C/O ratio in the EHV gas versus high C/O ratio in the fast and slow wings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.