Context. Water is a key tracer of dynamics and chemistry in low-mass star-forming regions, but spectrally resolved observations have so far been limited in sensitivity and angular resolution, and only data from the brightest low-mass protostars have been published. Aims. The first systematic survey of spectrally resolved water emission in 29 low-mass (L < 40 L ) protostellar objects is presented. The sources cover a range of luminosities and evolutionary states. The aim is to characterise the line profiles to distinguish physical components in the beam and examine how water emission changes with protostellar evolution. Methods. H 2 O was observed in the ground-state 1 10 -1 01 transition at 557 GHz (E up /k B ∼ 60 K) as single-point observations with the Heterodyne Instrument for the Far-Infrared (HIFI) on Herschel in 29 deeply embedded Class 0 and I low-mass protostars. Complementary far-IR and sub-mm continuum data (including PACS data from our programme) are used to constrain the spectral energy distribution (SED) of each source. H 2 O intensities are compared to inferred envelope properties, e.g., mass and density, outflow properties and CO 3-2 emission. Results. H 2 O emission is detected in all objects except one (TMC1A). The line profiles are complex and consist of several kinematic components tracing different physical regions in each system. In particular, the profiles are typically dominated by a broad Gaussian emission feature, indicating that the bulk of the water emission arises in outflows, not in the quiescent envelope. Several sources show multiple shock components appearing in either emission or absorption, thus constraining the internal geometry of the system. Furthermore, the components include inverse P-Cygni profiles in seven sources (six Class 0, one Class I) indicative of infalling envelopes, and regular P-Cygni profiles in four sources (three Class I, one Class 0) indicative of expanding envelopes. Molecular "bullets" moving at > ∼ 50 km s −1 with respect to the source are detected in four Class 0 sources; three of these sources were not known to harbour bullets previously. In the outflow, the H 2 O/CO abundance ratio as a function of velocity is nearly the same for all line wings, increasing from 10 −3 at low velocities (<5 km s −1 ) to > ∼ 10 −1 at high velocities (>10 km s −1 ). The water abundance in the outer cold envelope is low, > ∼ 10 −10 . The different H 2 O profile components show a clear evolutionary trend: in the younger Class 0 sources the emission is dominated by outflow components originating inside an infalling envelope. When large-scale infall diminishes during the Class I phase, the outflow weakens and H 2 O emission all but disappears.
Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extra-solar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on-board the Herschel Space Observatory has detected emission from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface hinting at a water ice reservoir equivalent to several thousand Earth Oceans in mass. The water's ortho-to-para ratio falls well below that of Solar System comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.Comment: 18 pages, 2 figures. Corrected typo in reported mass (in g) of detected water vapor reservoir. All conclusions are unchange
Context. Understanding the physical phenomena involved in the earlierst stages of protostellar evolution requires knowledge of the heating and cooling processes that occur in the surroundings of a young stellar object. Spatially resolved information from its constituent gas and dust provides the necessary constraints to distinguish between different theories of accretion energy dissipation into the envelope. Aims. Our aims are to quantify the far-infrared line emission from low-mass protostars and the contribution of different atomic and molecular species to the gas cooling budget, to determine the spatial extent of the emission, and to investigate the underlying excitation conditions. Analysis of the line cooling will help us characterize the evolution of the relevant physical processes as the protostar ages. Methods. Far-infrared Herschel-PACS spectra of 18 low-mass protostars of various luminosities and evolutionary stages are studied in the context of the WISH key program. For most targets, the spectra include many wavelength intervals selected to cover specific CO, H 2 O, OH, and atomic lines. For four targets the spectra span the entire 55-200 μm region. The PACS field-of-view covers ∼47 with the resolution of 9.4 . Results. Most of the protostars in our sample show strong atomic and molecular far-infrared emission. Water is detected in 17 out of 18 objects (except TMC1A), including 5 Class I sources. The high-excitation H 2 O 8 18 -7 07 63.3 μm line (E u /k B = 1071 K) is detected in 7 sources. CO transitions from J = 14−13 up to J = 49−48 are found and show two distinct temperature components on Boltzmann diagrams with rotational temperatures of ∼350 K and ∼700 K. H 2 O has typical excitation temperatures of ∼150 K. Emission from both Class 0 and I sources is usually spatially extended along the outflow direction but with a pattern that depends on the species and the transition. In the extended sources, emission is stronger off source and extended on ≥10 000 AU scales; in the compact sample, more than half of the flux originates within 1000 AU of the protostar. The Conclusions. The PACS data probe at least two physical components. The H 2 O and CO emission very likely arises in non-dissociative (irradiated) shocks along the outflow walls with a range of pre-shock densities. Some OH is also associated with this component, most likely resulting from H 2 O photodissociation. UV-heated gas contributes only a minor fraction to the CO emission observed by PACS, based on the strong correlation between the shock-dominated CO 24-23 line and the CO 14-13 line. [O i] and some of the OH emission probe dissociative shocks in the inner envelope. The total far-infrared cooling is dominated by H 2 O and CO, with the fraction contributed by [O i] increasing for Class I sources. Consistent with previous studies, the ratio of total far-infrared line emission over bolometric luminosity decreases with the evolutionary state.
Context. The NGC 1333 IRAS 4A and IRAS 4B sources are among the most well-studied Stage 0 low-mass protostars, which drive prominent bipolar outflows. Spectrally resolved molecular emission lines provide crucial information about the physical and chemical structure of the circumstellar material as well as the dynamics of the different components. Most studies have so far concentrated on the colder parts (T ≤ 30 K) of these regions. Aims. The aim is to characterize the warmer parts of the protostellar envelope using the new generation of submillimeter instruments. This will allow us to quantify the feedback of the protostars on their surroundings in terms of shocks, ultraviolet (UV) heating, photodissociation, and outflow dispersal. Methods. The dual frequency 2 × 7 pixel 650/850 GHz array receiver CHAMP + mounted on APEX was used to obtain a fully sampled, large-scale ∼4 × 4 map at 9 resolution of the IRAS 4A/4B region in the 12 CO J = 6-5 line. Smaller maps were observed in the 13 CO 6-5 and [C i] J = 2-1 lines. In addition, a fully sampled 12 CO J = 3-2 map made with HARP-B on the JCMT is presented and deep isotopolog observations are obtained at selected outflow positions to constrain the optical depth. Complementary Herschel-HIFI and ground-based lines of CO and its isotopologs, from J = 1-0 up to 10-9 (E u /k ≈ 300 K), are collected at the source positions and used to construct velocity-resolved CO ladders and rotational diagrams. Radiative-transfer models of the dust and lines are used to determine the temperatures and masses of the outflowing and photon-heated gas and infer the CO abundance structure. Results. Broad CO emission-line profiles trace entrained shocked gas along the outflow walls, which have an average temperature of ∼100 K. At other positions surrounding the outflow and the protostar, the 6-5 line profiles are narrow indicating UV excitation. The narrow 13 CO 6-5 data directly reveal the UV heated gas distribution for the first time. The amount of UV-photon-heated gas and outflowing gas are quantified from the combined 12 CO and 13 CO 6-5 maps and found to be comparable within a 20 radius around IRAS 4A, which implies that UV photons can affect the gas as much as the outflows. Weak [C I] emission throughout the region indicates that there is a lack of CO dissociating photons. Our modeling of the C 18 O lines demonstrates the necessity of a "drop" abundance profile throughout the envelopes where the CO freezes out and is reloaded back into the gas phase through grain heating, thus providing quantitative evidence of the CO ice evaporation zone around the protostars. The inner abundances are less than the canonical value of CO/H 2 = 2.7 × 10 −4 , however, implying that there is some processing of CO into other species on the grains. The implications of our results for the analysis of spectrally unresolved Herschel data are discussed.
Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.