Context. Water is a key tracer of dynamics and chemistry in low-mass star-forming regions, but spectrally resolved observations have so far been limited in sensitivity and angular resolution, and only data from the brightest low-mass protostars have been published. Aims. The first systematic survey of spectrally resolved water emission in 29 low-mass (L < 40 L ) protostellar objects is presented. The sources cover a range of luminosities and evolutionary states. The aim is to characterise the line profiles to distinguish physical components in the beam and examine how water emission changes with protostellar evolution. Methods. H 2 O was observed in the ground-state 1 10 -1 01 transition at 557 GHz (E up /k B ∼ 60 K) as single-point observations with the Heterodyne Instrument for the Far-Infrared (HIFI) on Herschel in 29 deeply embedded Class 0 and I low-mass protostars. Complementary far-IR and sub-mm continuum data (including PACS data from our programme) are used to constrain the spectral energy distribution (SED) of each source. H 2 O intensities are compared to inferred envelope properties, e.g., mass and density, outflow properties and CO 3-2 emission. Results. H 2 O emission is detected in all objects except one (TMC1A). The line profiles are complex and consist of several kinematic components tracing different physical regions in each system. In particular, the profiles are typically dominated by a broad Gaussian emission feature, indicating that the bulk of the water emission arises in outflows, not in the quiescent envelope. Several sources show multiple shock components appearing in either emission or absorption, thus constraining the internal geometry of the system. Furthermore, the components include inverse P-Cygni profiles in seven sources (six Class 0, one Class I) indicative of infalling envelopes, and regular P-Cygni profiles in four sources (three Class I, one Class 0) indicative of expanding envelopes. Molecular "bullets" moving at > ∼ 50 km s −1 with respect to the source are detected in four Class 0 sources; three of these sources were not known to harbour bullets previously. In the outflow, the H 2 O/CO abundance ratio as a function of velocity is nearly the same for all line wings, increasing from 10 −3 at low velocities (<5 km s −1 ) to > ∼ 10 −1 at high velocities (>10 km s −1 ). The water abundance in the outer cold envelope is low, > ∼ 10 −10 . The different H 2 O profile components show a clear evolutionary trend: in the younger Class 0 sources the emission is dominated by outflow components originating inside an infalling envelope. When large-scale infall diminishes during the Class I phase, the outflow weakens and H 2 O emission all but disappears.
Context. Understanding the physical phenomena involved in the earlierst stages of protostellar evolution requires knowledge of the heating and cooling processes that occur in the surroundings of a young stellar object. Spatially resolved information from its constituent gas and dust provides the necessary constraints to distinguish between different theories of accretion energy dissipation into the envelope. Aims. Our aims are to quantify the far-infrared line emission from low-mass protostars and the contribution of different atomic and molecular species to the gas cooling budget, to determine the spatial extent of the emission, and to investigate the underlying excitation conditions. Analysis of the line cooling will help us characterize the evolution of the relevant physical processes as the protostar ages. Methods. Far-infrared Herschel-PACS spectra of 18 low-mass protostars of various luminosities and evolutionary stages are studied in the context of the WISH key program. For most targets, the spectra include many wavelength intervals selected to cover specific CO, H 2 O, OH, and atomic lines. For four targets the spectra span the entire 55-200 μm region. The PACS field-of-view covers ∼47 with the resolution of 9.4 . Results. Most of the protostars in our sample show strong atomic and molecular far-infrared emission. Water is detected in 17 out of 18 objects (except TMC1A), including 5 Class I sources. The high-excitation H 2 O 8 18 -7 07 63.3 μm line (E u /k B = 1071 K) is detected in 7 sources. CO transitions from J = 14−13 up to J = 49−48 are found and show two distinct temperature components on Boltzmann diagrams with rotational temperatures of ∼350 K and ∼700 K. H 2 O has typical excitation temperatures of ∼150 K. Emission from both Class 0 and I sources is usually spatially extended along the outflow direction but with a pattern that depends on the species and the transition. In the extended sources, emission is stronger off source and extended on ≥10 000 AU scales; in the compact sample, more than half of the flux originates within 1000 AU of the protostar. The Conclusions. The PACS data probe at least two physical components. The H 2 O and CO emission very likely arises in non-dissociative (irradiated) shocks along the outflow walls with a range of pre-shock densities. Some OH is also associated with this component, most likely resulting from H 2 O photodissociation. UV-heated gas contributes only a minor fraction to the CO emission observed by PACS, based on the strong correlation between the shock-dominated CO 24-23 line and the CO 14-13 line. [O i] and some of the OH emission probe dissociative shocks in the inner envelope. The total far-infrared cooling is dominated by H 2 O and CO, with the fraction contributed by [O i] increasing for Class I sources. Consistent with previous studies, the ratio of total far-infrared line emission over bolometric luminosity decreases with the evolutionary state.
During the embedded phase of pre-main sequence stellar evolution, a disk forms from the dense envelope while an accretiondriven outflow carves out a cavity within the envelope. Highly excited (E = 1000−3000 K) H 2 O emission in spatially unresolved Spitzer/IRS spectra of a low-mass Class 0 object, NGC 1333 IRAS 4B, has previously been attributed to the envelope-disk accretion shock. However, the highly excited H 2 O emission could instead be produced in an outflow. As part of the survey of low-mass sources in the Water in Star Forming Regions with Herschel (WISH-LM) program, we used Herschel/PACS to obtain a far-IR spectrum and several Nyquist-sampled spectral images to determine the origin of excited H 2 O emission from NGC 1333 IRAS 4B. The spectrum has high signal-to-noise in a rich forest of H 2 O, CO, and OH lines, providing a near-complete census of far-IR molecular emission from a Class 0 protostar. The excitation diagrams for the three molecules all require fits with two excitation temperatures. The highly excited component of H 2 O emission is characterized by subthermal excitation of ∼1500 K gas with a density of ∼3 × 10 6 cm −3 , conditions that also reproduce the mid-IR H 2 O emission detected by Spitzer. On the other hand, a high density, low temperature gas can reproduce the H 2 O spectrum observed by Spitzer but underpredicts the H 2 O lines seen by Herschel. Nyquist-sampled spectral maps of several lines show two spatial components of H 2 O emission, one centered at ∼5 (1200 AU) south of the central source at the position of the blueshifted outflow lobe and a heavily extincted component centered on-source. The redshifted outflow lobe is likely completely obscured, even in the far-IR, by the optically thick envelope. Both spatial components of the far-IR H 2 O emission are consistent with emission from the outflow. In the blueshifted outflow lobe over 90% of the gas-phase O is molecular, with H 2 O twice as abundant than CO and 10 times more abundant than OH. The gas cooling from the IRAS 4B envelope cavity walls is dominated by far-IR H 2 O emission, in contrast to stronger [O I] and CO cooling from more evolved protostars. The high H 2 O luminosity may indicate that the shock-heated outflow is shielded from UV radiation produced by the star and at the bow shock.
We present the first complete ∼55−671 μm spectral scan of a low-mass Class 0 protostar (Serpens SMM1) taken with the PACS and SPIRE spectrometers onboard Herschel. More than 145 lines have been detected, most of them rotationally excited lines of 12 CO (full ladder from J u = 4−3 to 42−41 and E u /k = 4971 K), H 2 O (up to 8 18 −7 07 and E u /k = 1036 K), OH (up to 2 Π 1/2 J = 7/2−5/2 and E u /k = 618 K), 13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.