The photovoltaic parameters, i.e., the short‐circuit current, open‐circuit voltage and device fill factor, of bulk heterojunction solar cells that use perylene diimide (PDI) derivatives as electron acceptors are often far below the theoretically expected values for reasons still not entirely understood. This article demonstrates that the photovoltaic characteristics of blend films of regioregular poly(3‐hexylthiophene) (rr‐P3HT) and PDI molecules are improved upon using a core‐alkylated PDI derivative instead of the often used N‐alkylated PDI molecules. A doubling of the power conversion efficiency of P3HT:PDI solar cells by using the core‐alkylated PDI derivative is observed leading to an unprecedented power conversion efficiency of 0.5% for a P3HT:PDI solar cell under AM1.5 solar illumination. Furthermore, the optical properties of the novel PDI derivative are compared to two standard exclusively N‐alkylated PDI derivatives by steady‐state and time‐resolved photoluminescence spectroscopy in solution and solid state. The experiments reveal that aggregation in the solid state determines the photophysics of all PDI derivatives. However, the emission energy and excited state lifetime of the aggregates are clearly influenced by the alkyl‐substitution pattern through its effect on the packing of the PDI molecules. X‐ray diffraction experiments before and after thermal annealing of PDI:polystyrene and PDI:P3HT blends reveal subtle differences in the packing characteristics of the different PDI derivatives and, problematically, that P3HT ordering is suppressed by all of the PDI derivatives.
We report the synthesis and photophysical characterization of a series of hexa-peri-hexabenzocoronene (HBC)/perylenetetracarboxy diimide (PDI) dyads that are covalently linked with a rigid bridge. Both the ratio of the two components and the conjugation of the bridging element are systematically modified to study the influence on self-assembly and energy and electron transfer between electron donor HBC and acceptor PDI. STM and 2D-WAXS experiments reveal that both in solution and in bulk solid state the dyads assemble into well-ordered two-dimensional supramolecular structures with controllable mutual orientations and distances between donor and acceptor at a nanoscopic scale. Depending on the symmetry of the dyads, either columns with nanosegregated stacks of HBC and PDI or interdigitating networks with alternating HBC and PDI moieties are observed. UV-vis, photoluminescence, transient photoluminescence, and transient absorption spectroscopy confirm that after photoexcitation of the donor HBC a photoinduced electron transfer between HBC and PDI can only compete with the dominant Förster resonance energy transfer, if facilitated by an intimate stacking of HBC and PDI with sufficient orbital overlap. However, while the alternating stacks allow efficient electron transfer, only the nanosegregated stacks provide charge transport channels in bulk state that are a prerequisite for application as active components in thin film electronic devices. These results have important implications for the further design of functional donor-acceptor dyads, being promising materials for organic bulk heterojunction solar cells and field-effect transistors.
Self-assembly of a series of carboxylic acid-functionalized naphthalene diimide (NDI) chromophores with a varying number (n=1-4) of methylene spacers between the NDI ring and the carboxylic acid group has been studied. The derivatives show pronounced aggregation due to the synergistic effects of H-bonding between the carboxylic acid groups in a syn-syn catemer motif and π stacking between the NDI chromophores. Solvent-dependent UV/Vis studies reveal the existence of monomeric dye molecules in a "good" solvent such as chloroform and self-assembly in "bad" solvents such as methylcyclohexane. The propensity of self-assembly is comparable for all samples. Temperature-dependent spectroscopic studies show high thermal stability of the H-bonding-mediated self-assembled structures. In the presence of a protic solvent such as MeOH, self-assembly can be suppressed, suggesting a decisive role of H-bonding, whereas π stacking is more a consequence of than a cause for self-assembly. Syn-syn catemer-type H-bonding is supported by powder XRD studies and the results corroborate well with DFT calculations. The morphology as determined by AFM is found to be dependent on the value of n; with increasing n, the morphology gradually shifts from 2D nanosheets to 1D nanofibers. Emission spectra show sharp emission bands with relatively small Stokes shifts. In addition, a rather broad emission band is observed at longer wavelengths because of the in situ formation of excimer-type species. Due to such a heterogeneous nature, the emission spectrum spans almost the entire red-green-blue region. Depending on the value of n, the ratio of intensities of the two emission bands is changed, which results in a tunable luminescent color. Furthermore, in the case of n=1 and 3, almost pure white light emission is observed. Time-resolved photoluminescence spectra show a very short lifetime (a few picoseconds) of monomeric dye molecules and biexponential decays with longer lifetimes (on the order of nanoseconds) for aggregated species. Current-voltage measurements show electrical conductivity in the range of 10(-4) S cm(-1) for the aggregated chromophores, which is four orders of magnitude higher than the value for a structurally similar NDI control molecule lacking the H-bonding functionality.
The charge generation and recombination processes following photoexcitation of a low-bandgap polymer:perylene diimide photovoltaic blend are investigated by transient absorption pump−probe spectroscopy covering a dynamic range from femtoto microseconds to get insight into the efficiency-limiting photophysical processes. The photoinduced electron transfer from the polymer to the perylene acceptor takes up to several tens of picoseconds, and its efficiency is only half of that in a polymer:fullerene blend. This reduces the short-circuit current. Time-delayed collection field experiments reveal that the subsequent charge separation is strongly field-dependent, limiting the fill factor and lowering the short-circuit current in polymer:PDI devices. Upon excitation of the acceptor in the low-bandgap polymer blend, the PDI exciton undergoes charge transfer on a time scale of several tens of picoseconds. However, a significant fraction of the charges generated at the interface are quickly lost because of fast geminate recombination. This reduces the shortcircuit current even further, leading to a scenario in which only around 25% of the initial photoexcitations generate free charges that can potentially contribute to the photocurrent. In summary, the key photophysical limitations of perylene diimide as an acceptor in low-bandgap polymer blends appear at the interface between the materials, with the kinetics of both charge generation and separation inhibited as compared to that of fullerenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.