Abstract:The paper is devoted to the contributions of Coulomb and Amontons to the physics of friction from the viewpoint of current discussions and attempts to formulate generalized laws of friction.
This paper is devoted to an analytical, numerical, and experimental analysis of adhesive contacts subjected to tangential motion. In particular, it addresses the phenomenon of instable, jerky movement of the boundary of the adhesive contact zone and its dependence on the surface roughness. We argue that the “adhesion instabilities” with instable movements of the contact boundary cause energy dissipation similarly to the elastic instabilities mechanism. This leads to different effective works of adhesion when the contact area expands and contracts. This effect is interpreted in terms of “friction” to the movement of the contact boundary. We consider two main contributions to friction: (a) boundary line contribution and (b) area contribution. In normal and rolling contacts, the only contribution is due to the boundary friction, while in sliding both contributions may be present. The boundary contribution prevails in very small, smooth, and hard contacts (as e.g., diamond-like-carbon (DLC) coatings), while the area contribution is prevailing in large soft contacts. Simulations suggest that the friction due to adhesion instabilities is governed by “Johnson parameter”. Experiments suggest that for soft bodies like rubber, the stresses in the contact area can be characterized by a constant critical value. Experiments were carried out using a setup allowing for observing the contact area with a camera placed under a soft transparent rubber layer. Soft contacts show a great variety of instabilities when sliding with low velocity — depending on the indentation depth and the shape of the contacting bodies. These instabilities can be classified as “microscopic” caused by the roughness or chemical inhomogeneity of the surfaces and “macroscopic” which appear also in smooth contacts. The latter may be related to interface waves which are observed in large contacts or at small indentation depths. Numerical simulations were performed using the Boundary Element Method (BEM).
Abstract:The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is lost during a part of the oscillation period, so that the sample starts to "jump". It is shown that the macroscopic coefficient of friction is a function of only two dimensionless parameters-a dimensionless sliding velocity and dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we consider "stiff systems", where the contact stiffness is small compared with the stiffness of the system. The role of the system stiffness will be studied in more detail in a separate paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.