We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots. Some key takeaways from the competition are: (i) pretrained Transformer variants are currently the best performing models on this task, (ii) but to improve performance on multi-turn conversations with humans, future systems must go beyond single word metrics like perplexity to measure the performance across sequences of utterances (conversations) in terms of repetition, consistency and balance of dialogue acts (e.g. how many questions asked vs. answered).
Recent research has shown the advantages of using autoencoders based on deep neural networks for collaborative filtering. In particular, the recently proposed Mult-VAE model, which used the multinomial likelihood variational autoencoders, has shown excellent results for top-N recommendations. In this work, we propose the Recommender VAE (RecVAE) model that originates from our research on regularization techniques for variational autoencoders. RecVAE introduces several novel ideas to improve Mult-VAE, including a novel composite prior distribution for the latent codes, a new approach to setting the β hyperparameter for the β-VAE framework, and a new approach to training based on alternating updates. In experimental evaluation, we show that RecVAE significantly outperforms previously proposed autoencoder-based models, including Mult-VAE and RaCT, across classical collaborative filtering datasets, and present a detailed ablation study to assess our new developments. Code and models are available at https://github.com/ilya-shenbin/RecVAE.
Adoption of messaging communication and voice assistants has grown rapidly in the last years. This creates a demand for tools that speed up prototyping of featurerich dialogue systems. An open-source library DeepPavlov is tailored for development of conversational agents. The library prioritises efficiency, modularity, and extensibility with the goal to make it easier to develop dialogue systems from scratch and with limited data available. It supports modular as well as end-to-end approaches to implementation of conversational agents. Conversational agent consists of skills and every skill can be decomposed into components. Components are usually models which solve typical NLP tasks such as intent classification, named entity recognition or pre-trained word vectors. Sequence-to-sequence chitchat skill, question answering skill or task-oriented skill can be assembled from components provided in the library.
Text mining of scientific libraries and social media has already proven itself as a reliable tool for drug repurposing and hypothesis generation. The task of mapping a disease mention to a concept in a controlled vocabulary, typically to the standard thesaurus in the Unified Medical Language System (UMLS), is known as medical concept normalization. This task is challenging due to the differences in the use of medical terminology between health care professionals and social media texts coming from the lay public. To bridge this gap, we use sequence learning with recurrent neural networks and semantic representation of one- or multi-word expressions: we develop end-to-end architectures directly tailored to the task, including bidirectional Long Short-Term Memory, Gated Recurrent Units with an attention mechanism, and additional semantic similarity features based on UMLS. Our evaluation against a standard benchmark shows that recurrent neural networks improve results over an effective baseline for classification based on convolutional neural networks. A qualitative examination of mentions discovered in a dataset of user reviews collected from popular online health information platforms as well as a quantitative evaluation both show improvements in the semantic representation of health-related expressions in social media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.