Lidar Systems for the measurement of three-dimensional wind or cloud and aerosol formations in the earth atmosphere require highly stable pulsed single frequency laser systems with a narrow line width. The lasers for ESAs ADM-Aeolus and EarthCARE missions require frequency stabilities of 4 and 10 MHz rms at a wavelength of 355 nm and a line width below 50 MHz at 30 ns pulse duration[1]. Transferred to the fundamental wavelength of the laser systems the stability requirement is 1.3 and 3.3 MHz, respectively. In comparison to ground based lidar systems the vibrational load on the laser system is much higher in airborne and spacebome systems, especially at high frequencies of some hundred Hertz or even some kHz. Suitable frequency stabilisation methods have therefore to be able to suppress these vibrations sufficiently. The often used Pulse-Build-up method is not suitable, due to its very limited capability to suppress vibration frequencies of the order of the pulse repeti tion frequency. In this study the performance of three frequency stabilisation methods in principle capable to meet the requirements, the cavity dither method, the modified Pound-Drever-Hall method and a modified Ramp-Fire method - named Ramp-Delay-Fire - is theoretically and experimentally investigated and compared. The investigation is performed on highly efficient, passively cooled, diode end-pumped q-switched Nd:YAG oscillators, which are breadboard versions of the A2D (ADM-Aeolus) and possible ATLAS (EarthCARE) oscillators. They deliver diffraction limited output pulses with up to 12 mJ pulse energy at a pulse duration of 30 ns and 100 Hz pulse repetition rate
For a spaceborne lidar a highly reliable, long living and efficient laser source is absolutely essential. Within the frame of the development of a laser source for the backscatter lidar ATLID, which will be flown on EarthCare mission, we setup and tested a predevelopment model of an injection-seeded, diode pumped, frequency tripled, pulsed high power Nd:YAG MOPA laser operating nominally at 100 Hz pulse repetition frequency. We also tested the burst operation mode. The excellent measured performance parameter will be introduced.The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes.The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes.Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-tovacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.
The passive-alignment-packaging technique presented in this work provides a method for mounting tolerance-insensitive optical components e.g. non-linear crystals by means of mechanical stops. The requested tolerances for the angle deviation are ±100 µrad and for the position tolerance ±100 µm. Only the angle tolerances were investigated, because they are more critical. The measurements were carried out with an autocollimator. Fused silica components were used for test series. A solder investigation was carried out. Different types of solder were tested. Due to good solderability on air and low induced stress in optical components, Sn based solders were indicated as the most suitable solders. In addition several concepts of reflow soldering configuration were realized. In the first iteration a system with only the alignment of the yaw angle was implemented. The deviation for all materials after the thermal and mechanical cycling was within the tolerances. The solderability of BBO and LBO crystals was investigated and concepts for mounting were developed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.