In a cable-driven parallel robot, elastic cables are used to manipulate the end effector in the workspace. In this paper we present a dynamic analysis and system identification for the complete actuator unit of a cable robot including servo controller, winch, cable, cable force sensor and field bus communication. We establish a second-order system with dead time as an analagous model. Based on this investigation, we propose the design and stability analysis of a cable force controller. We present the implementation of feed-forward and integral controllers based on a stiffness model of the cables. As the platform position is not observable the challenge is to control the cable force while maintaining the positional accuracy. Experimental evaluation of the force controller shows, that the absolute positional accuracy is even improved
Most cable-driven parallel robots are kinematically over-constrained mechanisms. This results in a non-trivial computation of the forward kinematic transformation. It is well known that the forward kinematics of parallel robots may have multiple solutions and in general the convergence of numerical methods is unknown. In recent works, it was proposed to formulate the forward kinematics as optimization problem that models the cables as linear springs in order to compute the platform pose which has minimal potential energy in the cables. In this paper, we analyzed this objective function. Using the Hessian matrix, we show that under certain conditions the problem at hand is convex and we can expect a unique and stable minimum. The computations are exemplified for point-shaped platforms as well as for the planar case. For the spatial case, we present an encouraging numerical study. An ordinary least squares method is then applied to find a position approximation and an improvement to previous methods is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.