This paper deals with thermal insulation and thermal contact properties of woven fabric assemblies used to produce men's jackets. An important part of the paper is the description of the new computer-controlled instrument, the Alambeta, to measure insulation and thermal contact properties of fabrics. The heat flow passing between the textile sample and measuring head during thermal contact is measured directly by a special thin sensor, whose thermal inertia is similar to that of human skin. Thus, the instrument's warm-cool feeling sensitivity aproximates human skin. Spotbonding the outer fabric interlining and lining together reduces the total thermal resistance of the assembly and simultaneously increases (makes cooler) thermal absorptivity, a new parameter used to describe the warm-cool feeling of fabric. The meaning of this parameter, which mainly reflects the surface properties of the fabrics and whose level does not depend on experimental conditions, is explained in detail. The effect of temperature drop on the thermal properties of the fabric assemblies is also investigated.The increased resulting thermal conductivity with the average temperature of the assembly is a consequence of the increased portion of the heat transferred through the system by radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.