Birefringence in heat-mechanical modified freshly moulded polyester fibers Abstract. The article submits new experimental data concerning to the role of combined thermo-mechanical treatments on the structural development of freshly moulded uncrystallized but crystallizable poly (ethylene terephthalate) (PET) fibers. The object of the present work is PET as a thermoplastic polymer with a large practical application. The report is devoted to the influence of the heat-mechanical modification temperature on the structure rearrangement in uniaxially orientated amorphous PET. The heat-mechanical modification of the investigated yarns and the optical measurements were realized by specialized gears constructed and built in the author's laboratories. The fibers heat-mechanical modification includes samples annealing at constant temperature above their glass transition temperature (T g ) without strain stress. The yarn annealing has been followed from well defined uniaxially strain-loading with values from 0 MPa up to 30 MPa during two minutes. The optical measurements were carried out by an optical system using a polarization microscope and a CCD camera. The obtained experimental data has been analyzed by Mocha-1.2 (Jandel Scientific) software. There are established dependences between the heat-mechanical modification mode and the structural rearrangements running in the studied PET samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.