The microencapsulated mixture of organic acids and pure botanicals (OA/PB) has never been evaluated in goats. The aim of this study was to extend the analysis to mid–late lactating dairy goats, evaluating the effects of OA/PB supplementation on the metabolic status, milk bacteriological and composition characteristics, and milk yield. Eighty mid–late lactating Saanen goats were randomly assigned to two groups: one group was fed the basal total balanced ration (TMR) (CRT; n = 40) and the other was fed a diet that was TMR supplemented with 10 g/head of OA/PB (TRT; n = 40) for 54 days during the summer period. The temperature–humidity index (THI) was recorded hourly. On days T0, T27, and T54, the milk yield was recorded, and blood and milk samples were collected during the morning milking. A linear mixed model was used, considering the fixed effects: diet, time, and their interaction. The THI data (mean ±SD: 73.5 ± 3.83) show that the goats did not endure heat stress. The blood parameters fell within the normal range, confirming that their metabolic status was not negatively influenced by OA/PB supplementation. OA/PB increased the milk fat content (p = 0.04) and milk coagulation index (p = 0.03), which are effects that are looked on as favorable by the dairy industry in relation to cheese production.
The slaughter performance and meat quality of two native Italian chicken breeds, Bionda Piemontese (BP, n = 64) and Bianca di Saluzzo (BS, n = 64), were investigated. Two-way ANOVA, considering breed, sex, and their interaction, was used to compare the properties of birds slaughtered at 5, 6, 7, and 8 months of age. Subsequently, data were analyzed using one-way ANOVA and the Duncan test to evaluate the differences between slaughter ages. The BP breed produced a better carcass yield than BS at 5, 7, and 8 months of age (p < 0.05). Breast moisture and crude protein contents were influenced by gender, and were higher in males than in females (p < 0.05). By contrast, the crude fat content was higher in females than in males (p < 0.05). The saturated fatty acid content of breast meat increased as the birds aged in both breeds (p < 0.05). The polyunsaturated fatty acid content of both breast and thigh meat was higher in males than in females (p < 0.001 and p < 0.05, respectively). In general, slaughtering at 7 months was associated with the best slaughter and meat quality characteristics in both breeds. Moreover, from a nutritional point of view, the characteristics of the meat from male birds were preferable to those of meat from females.
IntroductionThis research has been aimed at evaluating the effects of live black soldier fly larvae (BSFL) (Hermetia illucens) on the growth, slaughtering performance, and blood parameters of medium-growing chickens.MethodsA total of 240, 28-day-old, Label Rouge Naked Neck chickens were allotted to four experimental groups, according to the gender (males-females) and to the absence (control group, C) or presence (larvae group, L) of a dietary supplementation with 10% live BSFL, on the basis of the expected average daily feed intake (ADFI) (6 replicates/diet, 10 chickens/replicate). The birds were weighed weekly, and the feed consumption was recorded to calculate the average live weight, feed conversion ratio (FCR), average daily gain (ADG), and the ADFI. At 82 days of age, 2 birds/replicate (12 birds/diet) were selected and slaughtered. The blood samples were collected, and the carcass traits (carcass, breast, thigh, and organ weights and yields) were assessed.Results and discussionsOverall, the administered live BSFL did not impair the growth and slaughtering performance, or the blood traits, while the C females showed a better FCR than the treated ones (P < 0.05). The live BSFL consumption time was longer for the females than for the males (P < 0.001). The weight of the immune organs (spleen and bursa of Fabricius) increased as the live BSFL supplementation increased (P < 0.05). Furthermore, the provision of live BSFL reduced the gamma glutamyl transferase (GGT, U/l) activity content in the blood (P < 0.05). Finally, both the leukocytes (%) and the monocytes (%) were more abundant in the C groups than in the larvae ones (P < 0.05 and P < 0.01, respectively). In short, the supplementation of live BSFL can be used successfully as an environmental enrichment, without affecting the growth performance of male birds. Furthermore, the immune organ activity could be enhanced by the provision of live BSFL.
The purpose of this study was to investigate the effects of high levels of Tenebrio molitor dietary inclusion (15%) on molecular mechanisms that influence poultry health in a broiler chicken diet. The global gene expression of four tissues (breast, liver, jejunum, and caecum) was evaluated using the RNA-Seq approach. The analysis of differentially expressed genes suggested that the use of Tenebrio molitor leads to the overexpression of genes related to protein elongation required for tissue growth and development in the gut and liver. It would also appear to contain nutrients that reduce the expression of genes related to the immune system and inflammation of the mucosa. The dietary inclusion of Tenebrio molitor in poultry could also lead to a possible inactivation of the growth factor and a reduction of tissue free-radicals. No genes alterations have been detected in liver RNA expression that would discourage the use of larvae in feeding broilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.