Methanotrophic bacteria can use methane as their only energy and carbon source, and they can be deployed to manufacture a broad range of value-added materials, from single-cell protein (SCP) for feed and food applications over biopolymers, such as polyhydroxybutyrate (PHB), to value-added building blocks and chemicals. SCP can replace fish meal and soy for fish (aquacultures), chicken, and other feed applications, and also become a replacement for meat after suitable treatment, as a sustainable alternative protein. Polyhydroxyalkanoates (PHA) like PHB are a possible alternative to fossil-based thermoplastics. With ongoing and increasing pressure toward decarbonization in many industries, one can assume that natural gas consumption for combustion will decline. Methanotrophic upgrading of natural gas to valuable products is poised to become a very attractive option for owners of natural gas resources, regardless of whether they are connected to the gas grids. If all required protein, (bio) plastics, and chemicals were made from natural gas, only 7, 12, 16–32%, and in total only 35–51%, respectively, of the annual production volume would be required. Also, that volume of methane could be sourced from renewable resources. Scalability will be the decisive factor in the circular and biobased economy transition, and it is methanotrophic fermentation that can close that gap.
Methanotrophic bacteria can use methane as their only energy and carbon source, and they can be deployed to manufacture a broad range of value-added materials, from single cell protein (SCP) for feed and food applications over biopolymers such as polyhydroxybutyrate (PHB) to value-added building blocks and chemicals. SCP can replace fish meal and soy for fish (aquacultures), chicken and other feed applications, and also become a replacement of meat after suitable treatment, as a sustainable alternative protein. Polyhydroxyalkanoates (PHA) like PHB are a possible alternative to fossil-based thermoplastics. With ongoing and increasing pressure towards decarbonization in many industries, one can assume that natural gas consumption for combustion will decline. Methanotrophic upgrading of natural gas to valuable products is poised to become a very attractive option for owners of natural gas resources, regardless of whether they are connected to the gas grids. If all required protein, (bio)plastics and chemicals were made from natural gas, only 7, 12, 16–32%, and in total only 35–51%, respectively, of the annual production volume would be required. Also, that volume of methane could be sourced from renewable resources. Scalability will be the decisive factor in the circular and biobased economy transition, and it is methanotrophic fermentation that can close that gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.