Objective: To assess whether exposure to non-invasive brain stimulation with transcranial alternating current stimulation at g frequency (g-tACS) applied over Pz (an area overlying the medial parietal cortex and the precuneus) can improve memory and modulate cholinergic transmission in mild cognitive impairment due to Alzheimer's disease (MCI-AD). Methods: In this randomized, double-blind, sham controlled, crossover pilot study, participants were assigned to a single 60 min treatment with exposure to g-tACS over Pz or sham tACS. Each subject underwent a clinical evaluation including assessment of episodic memory pre-and post-g-tACS or sham stimulation. Indirect measures of cholinergic transmission evaluated using transcranial magnetic stimulation (TMS) pre-and post-g-tACS or sham tACS were evaluated. Results: Twenty MCI-AD participants completed the study. No tACS-related side effects were observed, and the intervention was well tolerated in all participants. We observed a significant improvement at the Rey auditory verbal learning (RAVL) test total recall (5.7 [95% CI, 4.0 to 7.4], p < 0.001) and long delayed recall scores (1.3 [95% CI, 0.4 to 2.1], p ¼ 0.007) after g-tACS but not after sham tACS. Face-name associations scores improved during gÀtACS (4.3 [95% CI, 2.8 to 5.8], p < 0.001) but not after sham tACS. Short latency afferent inhibition, an indirect measure of cholinergic transmission evaluated with TMS, increased only after g-tACS (0.31 [95% CI, 0.24 to 0.38], p < 0.001) but not after sham tACS. Conclusions: exposure to g-tACS over Pz showed a significant improvement of memory performances, along with restoration of intracortical connectivity measures of cholinergic neurotransmission, compared to sham tACS.
Blood-based biomarkers for amyloid beta and phosphorylated tau show good diagnostic accuracies and agreements with their corresponding CSF and neuroimaging biomarkers in the amyloid/tau/neurodegeneration [A/T/(N)] framework for Alzheimer’s disease. However, the blood-based neurodegeneration marker neurofilament light is not specific to Alzheimer’s disease while total-tau shows lack of correlation with CSF total-tau. Recent studies suggest that blood total-tau originates principally from peripheral, non-brain sources. We sought to address this challenge by generating an anti-tau antibody that selectively binds brain-derived tau and avoids the peripherally expressed ‘big tau’ isoform. We applied this antibody to develop an ultrasensitive blood-based assay for brain-derived tau, and validated it in five independent cohorts (n = 609) including a blood-to-autopsy cohort, CSF biomarker-classified cohorts and memory clinic cohorts. In paired samples, serum and CSF brain-derived tau were significantly correlated (rho = 0.85, P < 0.0001), while serum and CSF total-tau were not (rho = 0.23, P = 0.3364). Blood-based brain-derived tau showed equivalent diagnostic performance as CSF total-tau and CSF brain-derived tau to separate biomarker-positive Alzheimer’s disease participants from biomarker-negative controls. Furthermore, plasma brain-derived tau accurately distinguished autopsy-confirmed Alzheimer’s disease from other neurodegenerative diseases (area under the curve = 86.4%) while neurofilament light did not (area under the curve = 54.3%). These performances were independent of the presence of concomitant pathologies. Plasma brain-derived tau (rho = 0.52–0.67, P = 0.003), but not neurofilament light (rho = −0.14–0.17, P = 0.501), was associated with global and regional amyloid plaque and neurofibrillary tangle counts. These results were further verified in two memory clinic cohorts where serum brain-derived tau differentiated Alzheimer’s disease from a range of other neurodegenerative disorders, including frontotemporal lobar degeneration and atypical parkinsonian disorders (area under the curve up to 99.6%). Notably, plasma/serum brain-derived tau correlated with neurofilament light only in Alzheimer’s disease but not in the other neurodegenerative diseases. Across cohorts, plasma/serum brain-derived tau was associated with CSF and plasma AT(N) biomarkers and cognitive function. Brain-derived tau is a new blood-based biomarker that outperforms plasma total-tau and, unlike neurofilament light, shows specificity to Alzheimer’s disease-type neurodegeneration. Thus, brain-derived tau demonstrates potential to complete the AT(N) scheme in blood, and will be useful to evaluate Alzheimer’s disease-dependent neurodegenerative processes for clinical and research purposes.
This study provides Class II evidence that cerebello-spinal stimulation is effective and safe in cerebellar ataxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.