MiRNAs play a relevant role in regulating gene expression in a variety of physiological and pathological conditions including autoimmune disorders. MiRNAs are also important in the differentiation and function of the mouse intestinal epithelium. Our study was aimed to look for miRNA-based modulation of gene expression in celiac small intestine, and particularly for genes involved in cell intestinal differentiation/proliferation mechanisms. A cohort of 40 children (20 with active CD, 9 on a gluten-free diet (GFD), and 11 controls), were recruited at the Paediatrics Department (University of Naples Federico II). The expression of 365 human miRNAs was quantified by TaqMan low-density arrays. We used bioinformatics to predict putative target genes of miRNAs and to select biological pathways. The presence of NOTCH1, HES1, KLF4, MUC-2, Ki67 and beta-catenin proteins in the small intestine of CD and control children was tested by immunohistochemistry. The expression of about 20% of the miRNAs tested differed between CD and control children. We found that high miR-449a levels targeted and reduced both NOTCH1 and KLF4 in HEK-293 cells. NOTCH1, KLF4 signals and the number of goblet cells were lower in small intestine of children with active CD and in those on a GFD than in controls, whereas more nuclear beta-catenin staining, as a sign of the WNT pathway activation, and more Ki67 staining, as sign of proliferation, were present in crypts from CD patients than in controls.In conclusion we first demonstrate a miRNA mediated gene regulation in small intestine of CD patients. We also highlighted a reduced NOTCH1 pathway in our patients, irrespective of whether the disease was active or not. We suggest that NOTCH pathway could be constitutively altered in the celiac small intestine and could drive the increased proliferation and the decreased differentiation of intestinal cells towards the secretory goblet cell lineage.
BackgroundMaturity onset diabetes of the young type 2 (or GCK MODY) is a genetic form of diabetes mellitus provoked by mutations in the glucokinase gene (GCK).Methodology/Principal FindingsWe screened the GCK gene by direct sequencing in 30 patients from South Italy with suspected MODY. The mutation-induced structural alterations in the protein were analyzed by molecular modeling. The patients' biochemical, clinical and anamnestic data were obtained. Mutations were detected in 16/30 patients (53%); 9 of the 12 mutations identified were novel (p.Glu70Asp, p.Phe123Leu, p.Asp132Asn, p.His137Asp, p.Gly162Asp, p.Thr168Ala, p.Arg392Ser, p.Glu290X, p.Gln106_Met107delinsLeu) and are in regions involved in structural rearrangements required for catalysis. The prevalence of mutation sites was higher in the small domain (7/12: ∼59%) than in the large (4/12: 33%) domain or in the connection (1/12: 8%) region of the protein. Mild diabetic phenotypes were detected in almost all patients [mean (SD) OGTT = 7.8 mMol/L (1.8)] and mean triglyceride levels were lower in mutated than in unmutated GCK patients (p = 0.04).ConclusionsThe prevalence of GCK MODY is high in southern Italy, and the GCK small domain is a hot spot for MODY mutations. Both the severity of the GCK mutation and the genetic background seem to play a relevant role in the GCK MODY phenotype. Indeed, a partial genotype-phenotype correlation was identified in related patients (3 pairs of siblings) but not in two unrelated children bearing the same mutation. Thus, the molecular approach allows the physician to confirm the diagnosis and to predict severity of the mutation.
Mitochondrial DNA (mtDNA) haplogroups have been associated with the expression of mitochondrial-related diseases and with metabolic alterations, but their role has not yet been investigated in morbid obese Caucasian subjects. Therefore, we investigated the association between mitochondrial haplogroups and morbid obesity in patients from southern Italy. The mtDNA D-loop of morbid obese patients (n = 500; BMI > 40 kg/m2) and controls (n = 216; BMI < 25 kg/m2) was sequenced to determine the mtDNA haplogroups. The T and J haplogroup frequencies were higher and lower, respectively, in obese subjects than in controls. Women bearing haplogroup T or J had twice or half the risk of obesity. Binomial logistic regression analysis showed that haplogroup T and systolic blood pressure are risk factors for a high degree of morbid obesity, namely, BMI > 45 kg/m2 and in fact together account for 8% of the BMI. In conclusion, our finding that haplogroup T increases the risk of obesity by about two-fold, suggests that, besides nuclear genome variations and environmental factors, the T haplogroup plays a role in morbid obesity in our study population from southern Italy.
Adipose tissues show selective gene expression patterns, to whom microRNAs (miRNAs) may contribute. We evaluated in visceral adipose tissue (VAT) from obese and nonobese females, both miRNA and protein expression profiles, to identify miRNA/protein target pairs associated with obesity (metabolic pathways miRNA-deregulated during obesity). Obese and nonobese females [BMI 42.2 ± 1.6 and 23.7 ± 1.2 kg/m(2) (mean ± SEM), respectively] were enrolled in this study. Notably, most miRNAs were down-expressed in obese tissues, whereas most of the proteins from the investigated spots were up-expressed. Bioinformatics integration of miRNA expression and proteomic data highlighted two potential miRNA/protein target pairs: miR-141/YWHAG (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide) and miR-520e/RAB11A (Ras-related protein RAB-11A); the functional interaction between these miRNAs and their target sequences on the corresponding mRNAs was confirmed by luciferase assays. Both RAB11A and YWHAG proteins are involved in glucose homeostasis; YWHAG is also involved in lipid metabolism. Hence, the identified miRNA/protein target pairs are potential players in the obese phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.