Background and purpose: Statins and fibrates can produce mild to life-threatening skeletal muscle damage. Resting chloride channel conductance (gCl), carried by the ClC-1 channel, is reduced in muscles of rats chronically treated with fluvastatin, atorvastatin or fenofibrate, along with increased resting cytosolic calcium in statin-treated rats. A high gCl, controlled by the Ca 2+ -dependent protein kinase C (PKC), maintains sarcolemma electrical stability and its reduction alters muscle function. Here, we investigated how statins and fenofibrate impaired gCl. Experimental approach: In rats treated with fluvastatin, atorvastatin or fenofibrate, we examined the involvement of PKC in gCl reduction by the two intracellular microelectrodes technique and ClC-1 mRNA level by quantitative real time-polymerase chain reaction. Direct drug effects were tested by patch clamp analysis on human ClC-1 channels expressed in human embryonic kidney (HEK) 293 cells. Key results: Chelerythrine, a PKC inhibitor, applied in vitro on muscle dissected from atorvastatin-treated rats fully restored gCl, suggesting the involvement of this enzyme in statin action. Chelerythrine partially restored gCl in muscles from fluvastatin-treated rats but not in those from fenofibrate-treated rats, implying additional mechanisms for gCl impairment. Accordingly, a decrease of ClC-1 channel mRNA was found in both fluvastatin-and fenofibrate-treated rat muscles. Fenofibric acid, the in vivo metabolite of fenofibrate, but not fluvastatin, rapidly reduced chloride currents in HEK 293 cells. Conclusions and implications:Our data suggest multiple mechanisms underlie the effect of statins and fenofibrate on ClC-1 channel conductance. While statins promote Ca 2+ -mediated PKC activation, fenofibrate directly inhibits ClC-1 channels and both fluvastatin and fenofibrate impair expression of mRNA for ClC-1.
The mechanism by which the 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) induce skeletal muscle injury is still under debate. By using fura-2 cytofluorimetry on intact extensor digitorum longus muscle fibers, here we provided the first evidence that 2 months in vivo chronic treatment of rats with fluvastatin (5 and 20 mg kg Ϫ1 ) and atorvastatin (5 and 10 mg kg Ϫ1 ) caused an alteration of calcium homeostasis. All treated animals showed a significant increase of resting cytosolic calcium [Ca 2ϩ ] i , up to 60% with the higher fluvastatin dose and up to 20% with the other treatments. The [Ca 2ϩ ] i rise induced by statin administration was not due to an increase of sarcolemmal permeability to calcium. Furthermore, the treatments reduced caffeine responsiveness. In vitro application of fluvastatin caused changes of [Ca 2ϩ ] i , resembling the effect obtained after the in vivo administration. Indeed, fluvastatin produced a shift of mechanical threshold for contraction toward negative potentials and an increase of resting [Ca 2ϩ ] i . By using ruthenium red and cyclosporine A, we determined the sequence of the statininduced Ca 2ϩ release mechanism. Mitochondria appeared as the cellular structure responsible for the earlier event leading to a subsequent large sarcoplasmic reticulum Ca 2ϩ release. In conclusion, we suggest that calcium homeostasis alteration may be a crucial event for myotoxicity induced by this widely used class of hypolipidemic drugs.
Background and purpose: Skeletal muscle injury by hypolipidemic drugs is not fully understood. An extensive analysis of the effect of chronic treatment with fluvastatin (5 mgkg -1 and 20 mgkg -1 ), atorvastatin (10 mgkg -1 ) and fenofibrate (60 mgkg -1 ) on rat skeletal muscle was undertaken. Experimental approach: Myoglobinemia as sign of muscle damage was measured by enzymatic assay. Histological and immunohistochemical techniques were used to estimate muscle integrity and the presence of aquaporin-4, a protein controlling water homeostasis. Electrophysiological evaluation of muscle Cl -conductance (gCl) and mechanical threshold (MT) for contraction, index of intracellular calcium homeostasis, was performed by the two-intracellular microelectrodes technique. Key results: Fluvastatin (20 mgkg -1 ) increased myoglobinemia. The lower dose of fluvastatin did not modify myoglobinemia, but reduced urinary electrolytes, suggesting direct effects on renal function. Atorvastatin also increased myoglobinemia, with slight effects on urinary parameters. No treatment caused any histological damage to muscle or modification in the number of fibres expressing aquaporin-4. Either fluvastatin (at both doses) or atorvastatin reduced sarcolemma gCl and changed MT. Both statins produced slight effects on total cholesterol, suggesting that the observed modifications occur independently of HMGCoA-reductase inhibition. Fenofibrate increased myoglobinemia and decreased muscle gCl, whereas it did not change the MT, suggesting a different mechanism of action from the statins. Conclusions and Implications This study identifies muscle gCl and MT as early targets of drugs action that may contribute to milder symptoms of myotoxicity, such as muscle cramps, while the increase of myoglobinemia is a later phenomenon.
The role of tumour necrosis factor (TNF)-alpha or cyclo-oxygenase-2 (COX-2) eicosanoids in dystrophinopathies has been evaluated by chronically treating (4-8 weeks) adult dystrophic mdx mice with the anti-TNF-alpha etanercept (0.5 mg/kg) or the COX-2 inhibitor meloxicam (0.2 mg/kg). Throughout the treatment period the mdx mice underwent a protocol of exercise on treadmill in order to worsen the pathology progression; gastrocnemious muscles from exercised mdx mice showed an intense staining for TNF-alpha by immunohistochemistry. In vivo, etanercept, but not meloxicam, contrasted the exercise-induced forelimb force drop. Electrophysiological recordings ex vivo, showed that etanercept counteracted the decrease in chloride channel function (gCl), a functional index of myofibre damage, in both diaphragm and extensor digitorum longus (EDL) muscle, meloxicam being effective only in EDL muscle. None of the drugs ameliorated calcium homeostasis detected by electrophysiology and/or spectrofluorimetry. Etanercept, more than meloxicam, effectively reduced plasma creatine kinase (CK). Etanercept-treated muscles showed a reduction of connective tissue area and of pro-fibrotic cytokine TGF-beta1 vs. untreated ones; however, the histological profile was weakly ameliorated. In order to better evaluate the impact of etanercept treatment on histology, a 4-week treatment was performed on 2-week-old mdx mice, so to match the first spontaneous degeneration cycle. The histology profile of gastrocnemious was significantly improved with a reduction of degenerating area; however, CK levels were only slightly lower. The present results support a key role of TNF-alpha, but not of COX-2 products, in different phases of dystrophic progression. Anti-TNF-alpha drugs may be useful in combined therapies for Duchenne patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.