The variation of 77 biallelic sites located in the nonrecombining portion of the Y chromosome was examined in 608 male subjects from 22 African populations. This survey revealed a total of 37 binary haplotypes, which were combined with microsatellite polymorphism data to evaluate internal diversities and to estimate coalescence ages of the binary haplotypes. The majority of binary haplotypes showed a nonuniform distribution across the continent. Analysis of molecular variance detected a high level of interpopulation diversity (PhiST=0.342), which appears to be partially related to the geography (PhiCT=0.230). In sub-Saharan Africa, the recent spread of a set of haplotypes partially erased pre-existing diversity, but a high level of population (PhiST=0.332) and geographic (PhiCT=0.179) structuring persists. Correspondence analysis shows that three main clusters of populations can be identified: northern, eastern, and sub-Saharan Africans. Among the latter, the Khoisan, the Pygmies, and the northern Cameroonians are clearly distinct from a tight cluster formed by the Niger-Congo-speaking populations from western, central western, and southern Africa. Phylogeographic analyses suggest that a large component of the present Khoisan gene pool is eastern African in origin and that Asia was the source of a back migration to sub-Saharan Africa. Haplogroup IX Y chromosomes appear to have been involved in such a migration, the traces of which can now be observed mostly in northern Cameroon.
The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5,300-year-old H. pylori genome from a European Copper Age glacier mummy. The “Iceman” H. pylori is a nearly-pure representative of the bacterial population of Asian origin that existed in Europe prior to hybridization, suggesting the African population arrived in Europe within the last few thousand years.
In this paper, we present a study of genetic variation in sub-Saharan Africa, which is based on published and unpublished data on fast-evolving (hypervariable region 1 of mitochondrial DNA and six microsatellites of Y chromosome) and slow-evolving (haplogroup frequencies) polymorphisms of mtDNA and Y chromosome. Our study reveals a striking difference in the genetic structure of food-producer (Bantu and Sudanic speakers) and hunter-gatherer populations (Pygmies, Kung, and Hadza). In fact, the ratio of mtDNA to Y-chromosome Nupsilon is substantially higher in food producers than in hunter-gatherers as determined by fast-evolving polymorphisms (1.76 versus 0.11). This finding indicates that the two population groups differ substantially in female and male migration rate and/or effective size. The difference also persists when linguistically homogeneous populations are used and outlier populations are eliminated (1.78 vs 0.19) or when the jacknife procedure is applied to a paired population data set (1.32 to 7.84 versus 0.14 to 0.66). The higher ratio of mtDNA to Y-chromosome Nnu in food producers than in hunter-gatherers is further confirmed by the use of slow-evolving polymorphisms (1.59 to 7.91 versus 0.12 to 0.35). To explain these results, we propose a model that integrates demographic and genetic aspects and incorporates ethnographic knowledge. In such a model, the asymmetric gene flow, polyginy, and patrilocality play an important role in differentiating the genetic structure of sub-Saharan populations. The existence of an asymmetric gene flow is supported by the phylogeographic features of mtDNA and Y-chromosome haplogroups found in the two population groups. The role of polyginy and patrilocality is sustained by the evidence of a differential pressure of genetic drift and gene flow on maternal and paternal lineages of food producers and hunter-gatherers that is revealed through the analysis of mitochondrial and Y-chromosomal intrapopulational variation.
Recently, the debate on the origins of the major European Y chromosome haplogroup R1b1b2-M269 has reignited, and opinion has moved away from Palaeolithic origins to the notion of a younger Neolithic spread of these chromosomes from the Near East. Here, we address this debate by investigating frequency patterns and diversity in the largest collection of R1b1b2-M269 chromosomes yet assembled. Our analysis reveals no geographical trends in diversity, in contradiction to expectation under the Neolithic hypothesis, and suggests an alternative explanation for the apparent cline in diversity recently described. We further investigate the young, STR-based time to the most recent common ancestor estimates proposed so far for R-M269-related lineages and find evidence for an appreciable effect of microsatellite choice on age estimates. As a consequence, the existing data and tools are insufficient to make credible estimates for the age of this haplogroup, and conclusions about the timing of its origin and dispersal should be viewed with a large degree of caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.