Proper regulation of white and brown adipogenic differentiation is important for maintaining an organism's metabolic profile in a homeostatic state. The recent observations showing that the p53 tumor suppressor plays a role in metabolism raise the question of whether it is involved in the regulation of white and brown adipocyte differentiation. By using several in vitro models, representing various stages of white adipocyte differentiation, we found that p53 exerts a suppressive effect on white adipocyte differentiation in both mouse and human cells. Moreover, our in vivo analysis indicated that p53 is implicated in protection against diet-induced obesity. In striking contrast, our data shows that p53 exerts a positive regulatory effect on brown adipocyte differentiation. Abrogation of p53 function in skeletal muscle committed cells reduced their capacity to differentiate into brown adipocytes and histological analysis of brown adipose tissue revealed an impaired morphology in both embryonic and adult p53-null mice. Thus, depending on the specific adipogenic differentiation program, p53 may exert a positive or a negative effect. This cell type dependent regulation reflects an additional modality of p53 in maintaining a homeostatic state, not only in the cell, but also in the organism at large.
Microenvironmental factors contribute to the immune dysfunction characterizing acute myeloid leukemia (AML). Indoleamine 2,3-dioxygenase 1 (IDO1) is an interferon (IFN)-γ-inducible enzyme that degrades tryptophan into kynurenine, which, in turn, inhibits effector T cells and promotes regulatory T-cell (Treg) differentiation. It is presently unknown whether childhood AML cells express IDO1 and whether IDO1 activity correlates with patient outcome.We investigated IDO1 expression and function in 37 children with newly diagnosed AML other than acute promyelocytic leukemia. Blast cells were cultured with exogenous IFN-γ for 24 hours, followed by the measurement of kynurenine production and tryptophan consumption. No constitutive expression of IDO1 protein was detected in blast cells from the 37 AML samples herein tested. Conversely, 19 out of 37 (51%) AML samples up-regulated functional IDO1 protein in response to IFN-γ. The inability to express IDO1 by the remaining 18 AML samples was not apparently due to a defective IFN-γ signaling circuitry, as suggested by the measurement of signal transducer and activator of transcription 3 (STAT3) phosphorylation. Co-immunoprecipitation assays indicated the occurrence of physical interactions between STAT3 and IDO1 in AML blasts. In line with this finding, STAT3 inhibitors abrogated IDO1 function in AML blasts. Interestingly, levels of IFN-γ were significantly higher in the bone marrow fluid of IDO-expressing compared with IDO-nonexpressing AMLs. In mixed tumor lymphocyte cultures (MTLC), IDO-expressing AML blasts blunted the ability of allogeneic naïve T cells to produce IFN-γ and promoted Treg differentiation. From a clinical perspective, the 8-year event-free survival was significantly worse in IDO-expressing children (16.4%, SE 9.8) as compared with IDO-nonexpressing ones (48.0%, SE 12.1; p=0.035).These data indicate that IDO1 expression by leukemia blasts negatively affects the prognosis of childhood AML. Moreover, they speak in favor of the hypothesis that IDO can be targeted, in adjunct to current chemotherapy approaches, to improve the clinical outcome of children with AML.
BackgroundMultiple myeloma (MM) is a plasma cell malignancy with a multifaceted immune dysfunction. Indoleamine 2,3-dioxygenase 1 (IDO1) degrades tryptophan into kynurenine (KYN), which inhibits effector T cells and promote regulatory T-cell (Treg) differentiation. It is presently unknown whether MM cells express IDO1 and whether IDO1 activity correlates with immune system impairment.MethodsWe investigated IDO1 expression in 25 consecutive patients with symptomatic MM and in 7 patients with either monoclonal gammopathy of unknown significance (MGUS; n=3) or smoldering MM (SMM; n=4). IDO1-driven tryptophan breakdown was correlated with the release of hepatocyte growth factor (HGF) and with the frequency of Treg cells and NY-ESO-1-specific CD8+ T cells.ResultsKYN was increased in 75% of patients with symptomatic MM and correlated with the expansion of CD4+CD25+FoxP3+ Treg cells and the contraction of NY-ESO-1-specific CD8+ T cells. In vitro, primary MM cells promoted the differentiation of allogeneic CD4+ T cells into bona fide CD4+CD25hiFoxP3hi Treg cells and suppressed IFN-γ/IL-2 secretion, while preserving IL-4 and IL-10 production. Both Treg expansion and inhibition of Th1 differentiation by MM cells were reverted, at least in part, by d,l-1-methyl-tryptophan, a chemical inhibitor of IDO. Notably, HGF levels were higher within the BM microenvironment of patients with IDO+ myeloma disease compared with patients having IDO- MM. Mechanistically, the antagonism of MET receptor for HGF with SU11274, a MET inhibitor, prevented HGF-induced AKT phosphorylation in MM cells and translated into reduced IDO protein levels and functional activity.ConclusionsThese data suggest that IDO1 expression may contribute to immune suppression in patients with MM and possibly other HGF-producing cancers.
The integrin A 6 B 4 has been shown to facilitate key functions of carcinoma cells, including their ability to migrate, invade, and evade apoptosis. The mechanism involved seems to be a profound effect of A 6 B 4 on specific signaling pathways, especially the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. An intimate relationship between A 6 B 4 and growth factor receptors may explain this effect of A 6 B 4 on signaling. Previously, we showed that A 6 B 4 and ErbB-2 can function synergistically to activate the PI3K/Akt pathway. Given that ErbB-2 can activate PI3K only when it heterodimerizes with other members of the epidermal growth factor receptor family, these data imply that other receptors cooperate in this process. Here, we report that A 6 B 4 can regulate the expression of ErbB-3 using several different models and that the consequent formation of an ErbB-2/ErbB-3 heterodimer promotes the A 6 B 4 -dependent activation of PI3K/Akt and the ability of this integrin to impede apoptosis of carcinoma cells. Our data also support the hypothesis that A 6 B 4 can regulate ErbB-3 expression at the translational level as evidenced by the findings that A 6 B 4 does not increase ErbB-3 mRNA significantly, and that this regulation is both rapamycin sensitive and dependent on eukaryotic translation initiation factor 4E. These findings provide one mechanism to account for the activation of PI3K by A 6 B 4 and they also provide insight into the regulation of ErbB-3 in carcinoma cells. [Cancer Res 2007;67(4):1645-52]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.