Nanosized objects, such as nanoparticles and other drug carriers used in nanomedicine, once in contact with biological environments are modified by adsorption of biomolecules on their surface. The presence of this corona strongly affects the following interactions at cell and organism levels. It has been shown that corona proteins can be recognized by cell receptors. However, it is not known whether the composition of this acquired layer can also affect the mechanisms nanoparticles use to enter cells. This is of particular importance when considering that the same nanoparticles can form different coronas for instance in vitro when exposed to cells in different serum amounts or in vivo depending on the exposure or administration route. Thus, in this work, different coronas were formed on 50 nm silica by exposing them to different serum concentrations. The uptake efficiency in HeLa cells was compared, and the uptake mechanisms were characterized using transport inhibitors and RNA interference. The results showed that the nanoparticles were internalized by cells via different mechanisms when different coronas were formed, and only for one corona condition was uptake mediated by the LDL receptor. This suggested that coronas of different composition can be recognized differently by cell receptors, and this in turn leads to internalization via different mechanisms. Similar studies were performed using other cells, including A549 cells and primary HUVEC, and different nanoparticles, namely 100 nm liposomes and 200 nm silica. Overall, the results confirmed that the corona composition can affect the mechanisms of nanoparticle uptake by cells.
Gene therapy holds great potential for treating almost any disease by gene silencing, protein expression, or gene correction. To efficiently deliver the nucleic acid payload to its target tissue, the genetic material needs to be combined with a delivery platform. Lipid nanoparticles (LNPs) have proven to be excellent delivery vectors for gene therapy and are increasingly entering into routine clinical practice. Over the past two decades, the optimization of LNP formulations for nucleic acid delivery has led to a well-established body of knowledge culminating in the first-ever RNA interference therapeutic using LNP technology, i.e., Onpattro, and many more in clinical development to deliver various nucleic acid payloads. Screening a lipid library in vivo for optimal gene silencing potency in hepatocytes resulted in the identification of the Onpattro formulation. Subsequent studies discovered that the key to Onpattro's liver tropism is its ability to form a specific "biomolecular corona". In fact, apolipoprotein E (ApoE), among other proteins, adsorbed to the LNP surface enables specific hepatocyte targeting. This proof-of-principle example demonstrates the use of the biomolecular corona for targeting specific receptors and cells, thereby opening up the road to rationally designing LNPs. To date, however, only a few studies have explored in detail the corona of LNPs, and how to efficiently modulate the corona remains poorly understood. In this review, we summarize recent discoveries about the biomolecular corona, expanding the knowledge gained with other nanoparticles to LNPs for nucleic acid delivery. In particular, we address how particle stability, biodistribution, and targeting of LNPs can be influenced by the biological environment. Onpattro is used as a case study to describe both the successful development of an LNP formulation for gene therapy and the key influence of the biological environment. Moreover, we outline the techniques available to isolate and analyze the corona of LNPs, and we highlight their advantages and drawbacks. Finally, we discuss possible implications of the biomolecular corona for LNP delivery and we examine the potential of exploiting the corona as a targeting strategy beyond the liver to develop next-generation gene therapies.
Nano-sized materials have great potential as drug carriers for nanomedicine applications. Thanks to their size, they can exploit the cellular machinery to enter cells and be trafficked intracellularly, thus they can be used to overcome some of the cellular barriers to drug delivery. Nano-sized drug carriers of very different properties can be prepared, and their surface can be modified by the addition of targeting moieties to recognize specific cells. However, it is still difficult to understand how the material properties affect the subsequent interactions and outcomes at cellular level. As a consequence of this, designing targeted drugs remains a major challenge in drug delivery. Within this context, we discuss the current understanding of the initial steps in the interactions of nano-sized materials with cells in relation to nanomedicine applications. In particular, we focus on the difficult interplay between the initial adhesion of nano-sized materials to the cell surface, the potential recognition by cell receptors, and the subsequent mechanisms cells use to internalize them. The factors affecting these initial events are discussed. Then, we briefly describe the different pathways of endocytosis in cells and illustrate with some examples the challenges in understanding how nanomaterial properties, such as size, charge, and shape, affect the mechanisms cells use for their internalization. Technical difficulties in characterizing these mechanisms are presented. A better understanding of the first interactions of nano-sized materials with cells will help to design nanomedicines with improved targeting.
Aim: In this work we illustrate limits and challenges associated with the use of pharmacological inhibitors to study how nanomedicines enter cells and show how such limits can be overcome. Materials & methods: We selected a panel of six common pharmacological inhibitors and a model nanoparticle–cell system. We tested eventual toxicity by measuring cell viability. We confirmed drug efficacy by measuring the uptake of control markers for the pathways involved by flow cytometry and fluorescence microscopy. Results & conclusion: We show how to optimize the use of pharmacological inhibitors and interpret the results generated. Furthermore, we demonstrate that some inhibitors cannot be used for nanomedicine studies because they lose their efficacy when serum is added, as required for nanoparticle exposure to cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.