The study of bacterial isolates or communities requires the analysis of the therein included plasmids in order to provide an extensive characterization of the organisms. Plasmids harboring resistance and virulence factors are of especial interest as they contribute to the dissemination of antibiotic resistance. As the number of newly sequenced bacterial genomes is growing a comprehensive resource is required which will allow to browse and filter the available plasmids, and to perform sequence analyses. Here, we present PLSDB, a resource containing 13 789 plasmid records collected from the NCBI nucleotide database. The web server provides an interactive view of all obtained plasmids with additional meta information such as sequence characteristics, sample-related information and taxonomy. Moreover, nucleotide sequence data can be uploaded to search for short nucleotide sequences (e.g. specific genes) in the plasmids, to compare a given plasmid to the records in the collection or to determine whether a sample contains one or multiple of the known plasmids (containment analysis). The resource is freely accessible under https://ccb-microbe.cs.uni-saarland.de/plsdb/.
While the number of human miRNA candidates continuously increases, only a few of them are completely characterized and experimentally validated. Toward determining the total number of true miRNAs, we employed a combined in silico high- and experimental low-throughput validation strategy. We collected 28 866 human small RNA sequencing data sets containing 363.7 billion sequencing reads and excluded falsely annotated and low quality data. Our high-throughput analysis identified 65% of 24 127 mature miRNA candidates as likely false-positives. Using northern blotting, we experimentally validated miRBase entries and novel miRNA candidates. By exogenous overexpression of 108 precursors that encode 205 mature miRNAs, we confirmed 68.5% of the miRBase entries with the confirmation rate going up to 94.4% for the high-confidence entries and 18.3% of the novel miRNA candidates. Analyzing endogenous miRNAs, we verified the expression of 8 miRNAs in 12 different human cell lines. In total, we extrapolated 2300 true human mature miRNAs, 1115 of which are currently annotated in miRBase V22. The experimentally validated miRNAs will contribute to revising targetomes hypothesized by utilizing falsely annotated miRNAs.
IMPORTANCE The overall low survival rate of patients with lung cancer calls for improved detection tools to enable better treatment options and improved patient outcomes. Multivariable molecular signatures, such as blood-borne microRNA (miRNA) signatures, may have high rates of sensitivity and specificity but require additional studies with large cohorts and standardized measurements to confirm the generalizability of miRNA signatures.OBJECTIVE To investigate the use of blood-borne miRNAs as potential circulating markers for detecting lung cancer in an extended cohort of symptomatic patients and control participants. DESIGN, SETTING, AND PARTICIPANTSThis multicenter, cohort study included patients from case-control and cohort studies (TREND and COSYCONET) with 3102 patients being enrolled by convenience sampling between March 3, 2009, and March 19, 2018. For the cohort study TREND, population sampling was performed. Clinical diagnoses were obtained for 3046 patients (606 patients with non-small cell and small cell lung cancer, 593 patients with nontumor lung diseases, 883 patients with diseases not affecting the lung, and 964 unaffected control participants). No samples were removed because of experimental issues. The collected data were analyzed between April 2018 and November 2019. MAIN OUTCOMES AND MEASURESSensitivity and specificity of liquid biopsy using miRNA signatures for detection of lung cancer.RESULTS A total of 3102 patients with a mean (SD) age of 61.1 (16.2) years were enrolled. Data on the sex of the participants were available for 2856 participants; 1727 (60.5%) were men. Genome-wide miRNA profiles of blood samples from 3046 individuals were evaluated by machine-learning methods. Three classification scenarios were investigated by splitting the samples equally into training and validation sets. First, a 15-miRNA signature from the training set was used to distinguish patients diagnosed with lung cancer from all other individuals in the validation set with an accuracy of 91.4% (95% CI, 91.0%-91.9%), a sensitivity of 82.8% (95% CI, 81.5%-84.1%), and a specificity of 93.5% (95% CI, 93.2%-93.8%). Second, a 14-miRNA signature from the training set was used to distinguish patients with lung cancer from patients with nontumor lung diseases in the validation set with an accuracy of 92.5% (95% CI, 92.1%-92.9%), sensitivity of 96.4% (95% CI, 95.9%-96.9%), and specificity of 88.6% (95% CI, 88.1%-89.2%). Third, a 14-miRNA signature from the training set was used to distinguish patients with early-stage lung cancer from all individuals without lung cancer in the validation set with an accuracy of 95.9% (95% CI, 95.7%-96.2%), sensitivity of 76.3% (95% CI, 74.5%-78.0%), and specificity of 97.5% (95% CI, 97.2%-97.7%). CONCLUSIONS AND RELEVANCEThe findings of the study suggest that the identified patterns of miRNAs may be used as a component of a minimally invasive lung cancer test, complementing imaging, sputum cytology, and biopsy tests.
Metagenomics-based studies of mixed microbial communities are impacting biotechnology, life sciences and medicine. Computational binning of metagenomic data is a powerful approach for the culture-independent recovery of population-resolved genomic sequences, i.e. from individual or closely related, constituent microorganisms. Existing binning solutions often require a priori characterized reference genomes and/or dedicated compute resources. Extending currently available reference-independent binning tools, we developed the BusyBee Web server for the automated deconvolution of metagenomic data into population-level genomic bins using assembled contigs (Illumina) or long reads (Pacific Biosciences, Oxford Nanopore Technologies). A reversible compression step as well as bootstrapped supervised binning enable quick turnaround times. The binning results are represented in interactive 2D scatterplots. Moreover, bin quality estimates, taxonomic annotations and annotations of antibiotic resistance genes are computed and visualized. Ground truth-based benchmarks of BusyBee Web demonstrate comparably high performance to state-of-the-art binning solutions for assembled contigs and markedly improved performance for long reads (median F1 scores: 70.02–95.21%). Furthermore, the applicability to real-world metagenomic datasets is shown. In conclusion, our reference-independent approach automatically bins assembled contigs or long reads, exhibits high sensitivity and precision, enables intuitive inspection of the results, and only requires FASTA-formatted input. The web-based application is freely accessible at: https://ccb-microbe.cs.uni-saarland.de/busybee.
Validation of biomarkers is essential to advance the translational process to clinical application. Although there exists an increasing number of reports on small non-coding RNAs (microRNAs) as minimally-invasive markers from blood, serum or plasma, just a limited number is verified in follow-up studies. We used qRT-PCR to evaluate a known miRNA signature measured from blood that allowed for separation between patients with non-small cell lung cancer (NSCLC), COPD and healthy controls.From the data of our previous microarray studies we selected a panel of 235 miRNAs related to lung cancer and COPD. We observed a high concordance between the AUC values of our initial microarray screening and the qRT-PCR data (correlation of 0.704, p < 10−16). Overall, 90.3% of markers were successfully validated. Among the top markers that were concordant between both studies we found hsa-miR-20b-5p, hsa-miR-20a-5p, hsa-miR-17-5p, and hsa-miR-106a-5p. The qRT-PCR analysis also confirmed that non-small cell lung cancer patients could be accurately differentiated from unaffected controls: a subset of five markers was sufficient to separate NSCLC patients from unaffected controls with accuracy of 94.5% (specificity and sensitivity of 98% and 91%). Beyond differentiation from controls, we also succeeded in separating NSCLC patients from patients with COPD. MiRNAs that were identified as relevant for the separation between lung cancer and COPD by both qRT-PCR and the array-based studies included hsa-miR-26a-5p, hsa-miR-328-3p and hsa-miR-1224-3p. Although for differentiation between NSCLC patients from COPD patients more markers were required, still high accuracy rates were obtained (5 markers: 78.8%; 10 markers: 83.9%; 50 markers: 87.6%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.