Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5–10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.
Altogether, these results indicate that L-cysteine could be an effective pharmacological agent for the prevention of behavioral and molecular correlates of EtOH-primed reinstatement of EtOH seeking and that the shell of the Acb represents a critical neural substrate for priming-elicited reinstatement mechanisms involving ERK phosphorylation.
Sex-dependent differences have been consistently described in cannabinoid addiction research. In particular, we recently reported that female Lister Hooded rats display greater self-administration of the cannabinoid CB1 receptor agonist WIN55,212-2 (WIN) and stronger reinstatement of cannabinoid-seeking behavior than males. Cannabinoids modulate the phosphorylation of the extracellular-signal-regulated kinase (ERK) pathway, leading to various forms of plasticity-related learning that likely affect operant behavior. However, whether or not the reported sex-dependent differences in cannabinoid-taking and cannabinoid-seeking behaviors may be related to a sexual dimorphic activation of the ERK pathway remains still to be determined. In the present study, we measured the level of phosphoERK-positive cells in the cingulate cortex (CG1), prefrontal cortex (PFCx), and nucleus accumbens of male and of intact (i.e. sham-operated) and ovariectomized female Lister Hooded rats 30 and 60 min after an acute, intravenous, injection of a dose of WIN (0.3 mg/kg) resembling the mean amount of drug daily self-administered by trained rats. We found that WIN significantly increased ERK activation in the CG1, PFCx, and nucleus accumbens in a sex time and, restricted to the cortical areas, layer-specific manner. Moreover, the comparison between intact and ovariectomized female rats revealed a significant role played by estrogens in WIN-elicited ERK activation. These results indicate, for the first time, the existence of a sexually dimorphic cannabinoid receptor-dependent ERK activation that, restricted to the CG1 and PFCx, is ovarian hormone-dependent.
Roman high (RHA)- and low (RLA)-avoidance rats are selectively bred for rapid vs. poor acquisition of active avoidance, respectively, and differ markedly in emotional reactivity, coping style, and behavioral and neurochemical responses to morphine and psychostimulants. Accordingly, acute cocaine induces more robust increments in locomotion and dopamine output in the nucleus accumbens shell (AcbSh) of RHA than of RLA rats. Cocaine induces short- and long-term neuronal plasticity via activation of the extracellular signal-regulated kinase (ERK) pathway. This study compares the effects of acute cocaine on ERK phosphorylation (pERK) in limbic brain areas of Roman rats. In RHA but not RLA rats, cocaine (5 mg/kg) increased pERK in the infralimbic prefrontal cortex and AcbSh, two areas involved in its acute effects, but did not modify pERK in the prelimbic prefrontal cortex and Acb core, which mediate the chronic effects of cocaine. Moreover, cocaine failed to affect pERK immunolabeling in the bed nucleus of stria terminalis pars lateralis and central amygdala of either line but increased it in the basolateral amygdala of RLA rats. These results extend to pERK expression previous findings on the greater sensitivity to acute cocaine of RHA vs. RLA rats and confirm the notion that genetic factors influence the differential responses of the Roman lines to addictive drugs. Moreover, they support the view that the Roman lines are a useful tool to investigate the molecular underpinnings of individual vulnerability to drug addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.