Trophoblast cells are often compared to highly invasive carcinoma cells due to their capacity to proliferate in hypoxic conditions and to exhibit analogous vascular, proliferative, migratory, and invasive capacities. Thus, genes that are important for tumorigenesis, such as forkhead box M1 ( FOXM1) may also be involved in processes of trophoblast invasion. Indeed, we found Foxm1 protein and messenger RNA (mRNA) levels decreased as gestational age increased in rat's placentae. Accordingly, when mimicking early placental events in vitro, protein and mRNA expression of FOXM1 increased from 21% to 8% O, reaching its highest expression at 3% oxygen tension, which reflects early implantation environment, and dropping to very low levels at 1% O. Remarkably, FOXM1 silencing in JEG-3 cells was able to significantly decrease migration by 27.9%, in comparison with those cells transfected with control siRNA. Moreover, angiogenesis was compromised when conditioned media (CM) from FOXM1-siRNA -JEG-3 (3% O) was added to human umbilical vein endothelial cells (HUVEC) cells; however, when CM of JEG-3 cells overexpressing FOXM1 at 1% O was added, the ability of HUVEC to form tubule networks was restored. Additionally, quantitative real-time polymerase chain reaction (PCR) assays of FOXM1 knockdown and overexpression experiments in JEG-3 cells revealed that the depletion of FOXM1 at 3% O and overexpression of FOXM1 at 1% O led to downregulation and upregulation of vascular endothelial growth factor transcriptional (VEGF) levels, respectively. Conversely, we also observed deregulation of FOXM1 in placentae derived from pregnancies complicated by preeclampsia (PE). Therefore, we demonstrate that FOXM1 may be a new regulatory protein of early placentation processes and that under chronic hypoxic conditions (1% O) and in patients with severe PE, its levels decrease.
The meniscus possesses low self-healing properties. A perfect regenerative technique for this tissue has not yet been developed. This work aims to evaluate the role of hypoxia in meniscal development in vitro. Menisci from neonatal pigs (day 0) were harvested and cultured under two different atmospheric conditions: hypoxia (1% O2) and normoxia (21% O2) for up to 14 days. Samples were analysed at 0, 7 and 14 days by histochemical (Safranin-O staining), immunofluorescence and RT-PCR (in both methods for SOX-9, HIF-1α, collagen I and II), and biochemical (DNA, GAGs, DNA/GAGs ratio) techniques to record any possible differences in the maturation of meniscal cells. Safranin-O staining showed increments in matrix deposition and round-shape “fibro-chondrocytic” cells in hypoxia-cultured menisci compared with controls under normal atmospheric conditions. The same maturation shifting was observed by immunofluorescence and RT-PCR analysis: SOX-9 and collagen II increased from day zero up to 14 days under a hypoxic environment. An increment of DNA/GAGs ratio typical of mature meniscal tissue (characterized by fewer cells and more GAGs) was observed by biochemical analysis. This study shows that hypoxia can be considered as a booster to achieve meniscal cell maturation, and opens new opportunities in the field of meniscus tissue engineering.
Climate change involves different dramatic phenomena including desertification and wildfires, severe storms such as hurricanes and blizzards, increased sea levels resulting in flooding coastal cities and rise of atmospheric CO 2 concentration. The alteration of the climate in a specific region affects the life of indigenous animals and humans. The climate changes influence living beings both directly and indirectly. The immune system of animals dramatically suffers the climate instability, making animals more susceptible to infectious and not infectious diseases. Different species of livestock animals respond with similar mechanisms to global warming, but some of them are more susceptible depending on their age, metabolism, and genetic conditions. The selection and study of autochthonous species and breeds, more easily adapted to specific environmental conditions could be an interesting strategy to face livestock rearing in the future.
The success of cell-based approaches for the treatment of cartilage or fibro-cartilaginous tissue defects requires an optimal cell source with chondrogenic differentiation ability that maintains its differentiated properties and stability following implantation. For this purpose, the aim of this study was to evaluate the use of endostatin (COL18A1), an anti-angiogenic factor, which is physiologically involved in cell differentiation during meniscus development. Swine neonatal meniscal cells not yet subjected to mechanical stimuli were extracted, cultured in fibrin hydrogel scaffolds, and treated at two different time points (T1 = 9 days and T2 = 21 days) with different concentrations of COL18A1 (10 ng/mL; 100 ng/mL; 200 ng/mL). At the end of the treatments, the scaffolds were examined through biochemical, molecular, and histochemical analyses. The results showed that the higher concentration of COL18A1 promotes a fibro-chondrogenic phenotype and improves cellularity index (DNA content, p < 0.001) and cell efficiency (GAGs/DNA ratio, p < 0.01) after 21 days. These data are supported by the molecular analysis of collagen type I (COL1A1, a marker of fibrous-like tissue, p < 0.001), collagen type II (COL2A1, a marker of cartilaginous-like tissue, p < 0.001) and SRY-Box Transcription Factor 9 (SOX9, an early marker of chondrogenicity, p < 0.001), as well as by histological analysis (Safranin-O staining), laying the foundations for future studies evaluating the involvement of 3D endostatin hydrogel scaffolds in the differentiation of avascular tissues.
Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering. To overcome this issue, we aimed to investigate the role of hypoxia in the differentiation of the three anatomical areas of newborn piglet menisci (anterior horn (A), central body (C), and posterior horn (P)) and its effects on vascular factors. After sample collection, menisci were divided in A, C, P, and they were cultured in vitro under hypoxic (1% O2) and normoxic (21% O2) conditions at four different experimental time points (T0 = day of explant; T7 = day 7; T10 = day 10; T14 = day 14); samples were then evaluated through immune, histological, and molecular analyses, cell morpho-functional characteristics; with particular focus on matrix composition and expression of vascular factors. It was observed that hypoxia retained the initial phenotype of cells and induced extracellular matrix production resembling a mature tissue. Hypoxia also modulated the expression of angiogenic factors, especially in the early phase of the study. Thus, we observed that hypoxia contributes to the fibro-chondrogenic differentiation with the involvement of angiogenic factors, especially in the posterior horn, which corresponds to the predominant weight-bearing portion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.