This work aims at elucidating the mechanism and kinetics of hydrolysis of GANT61, the first and most-widely used inhibitor of the Hedgehog (Hh) signalling pathway that targets Glioma-associated oncogene homologue (Gli) proteins, and at confirming the chemical nature of its bioactive form. GANT61 is poorly stable under physiological conditions and rapidly hydrolyses into an aldehyde species (GANT61-A), which is devoid of the biological activity against Hh signalling, and a diamine derivative (GANT61-D), which has shown inhibition of Gli-mediated transcription. Here, we combined chemical synthesis, NMR spectroscopy, analytical studies, molecular modelling and functional cell assays to characterise the GANT61 hydrolysis pathway. Our results show that GANT61-D is the bioactive form of GANT61 in NIH3T3 Shh-Light II cells and SuFu−/− mouse embryonic fibroblasts, and clarify the structural requirements for GANT61-D binding to Gli1. This study paves the way to the design of GANT61 derivatives with improved potency and chemical stability.
HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents.
The total synthesis of the Diels-Alder-type adducts (±)-kuwanol E and the heptamethyl ether derivative of (±)-kuwanon Y has been accomplished via a convergent strategy involving 2'-hydroxychalcone 6 or 9 and dehydroprenylstilbene 7, in nine steps. The synthesis features, as a key step, a Lewis acid-mediated biomimetic intermolecular Diels-Alder [4+2] cycloaddition for the construction of the cyclohexene skeleton with three stereogenic centers. Notably, the endo/exo diastereoselectivity of the reaction proved to be temperature-controlled.
In recent years many advances have been made in the fight against HIV-1 infection. However, the lack of a vaccine, together with the increasing resistance to the highly active anti-retroviral therapy (HAART), make HIV-1 infection still a serious global emergency. Thus, new compounds with original modes of action are continuously required, and natural products have ever been a very interesting class of pharmacologically active molecules. Some of them have been used since ancient times against viral infections. Here we present a work in which we suggest that kuwanon-L, a natural product active as an HIV-1 integrase (IN) inhibitor, might exert its overall antiviral activity through binding to multiple viral targets. Specific enzymatic tests, together with a time-of-addition (TOA) experiment, support our hypothesis of binding both to IN and to reverse transcriptase (RT). Overall, this compound can be considered an attractive lead for the development of new classes of antiviral agents able to overcome the problem of resistance, due to its ability to exert its action by binding simultaneously to multiple viral targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.