Tau, as a microtubule (MT)-associated protein, participates in key neuronal functions such as the regulation of MT dynamics, axonal transport, and neurite outgrowth. Alternative splicing of exon 10 in the tau primary transcript gives rise to protein isoforms with three (3R) or four (4R) MT binding repeats. Although tau isoforms are balanced in the normal adult human brain, imbalances in 3R:4R ratio have been tightly associated with the pathogenesis of several neurodegenerative disorders, yet the underlying molecular mechanisms remain elusive. Several studies exploiting tau overexpression and/or mutations suggested that perturbations in tau metabolism impair axonal transport. Nevertheless, no physiological model has yet demonstrated the consequences of altering the endogenous relative content of tau isoforms over axonal transport regulation. Here, we addressed this issue using a trans-splicing strategy that allows modulating tau exon 10 inclusion/exclusion in differentiated human-derived neurons. Upon changes in 3R:4R tau relative content, neurons showed no morphological changes, but live imaging studies revealed that the dynamics of the amyloid precursor protein (APP) were significantly impaired. Single trajectory analyses of the moving vesicles showed that predominance of 3R tau favored the anterograde movement of APP vesicles, increasing anterograde run lengths and reducing retrograde runs and segmental velocities. Conversely, the imbalance toward the 4R isoform promoted a retrograde bias by a significant reduction of anterograde velocities. These findings suggest that changes in 3R:4R tau ratio has an impact on the regulation of axonal transport and specifically in APP dynamics, which might link tau isoform imbalances with APP abnormal metabolism in neurodegenerative processes.Key words: Alzheimer's; APP; axonal transport; splicing; tau; tauopathies IntroductionThe microtubule (MT)-associated protein tau regulates MT dynamics, supporting the axonal transport of proteins, vesicles, and organelles (for review, see Morris et al., 2011). A number of neurodegenerative diseases referred to as tauopathies, including Alzheimer's disease and some forms of frontotemporal dementia, Significance StatementThe tau protein has a relevant role in the transport of cargos throughout neurons. Dysfunction in tau metabolism underlies several neurological disorders leading to dementia. In the adult human brain, two tau isoforms are found in equal amounts, whereas changes in such equilibrium have been associated with neurodegenerative diseases. We investigated the role of tau in human neurons in culture and found that perturbations in the endogenous balance of tau isoforms were sufficient to impair the transport of the Alzheimer's disease-related amyloid precursor protein (APP), although neuronal morphology was normal. Our results provide evidence of a direct relationship between tau isoform imbalance and defects in axonal transport, which induce an abnormal APP metabolism with important implications in neurodegeneration. Neurosci...
Aberrant coronary vascular smooth muscle cell (CSMC) proliferation is a pivotal event underlying intimal hyperplasia, a phenomenon impairing the long-term efficacy of bypass surgery and angioplasty procedures. Consequently research has become focused on efforts to identify molecules that are able to control CSMC proliferation. We investigated downregulation of CSMC growth by small interfering RNAs (siRNAs) targeted against E2F1, cyclin E1, and cyclin E2 genes, whose contribution to CSMC proliferation is only now being recognized. Chemically synthesized siRNAs were delivered by two different transfection reagents to asynchronous and synchronous growing human CSMCs cultivated either in normo-or hyperglycemic conditions. The depletion of each of the three target genes affected the expression of the other two genes, demonstrating a close regulatory control. The clearest effects associated with the inhibition of the E2F1-cyclin E1/E2 circuit were the reduction in the phosphorylation levels of the retinoblastoma protein pRB and a decrease in the amount of cyclin A2. At the phenotypic level the downmodulation of CSMC proliferation resulted in a decrease of S phase matched by an increase of G1-G0 phase cell amounts. The antiproliferative effect was cell-donor and transfectant independent, reversible, and effective in asynchronous and synchronous growing CSMCs. Importantly, it was also evident in hyperglycemia, a condition that underlies diabetes. No significant aspecific cytotoxicity was observed. Our data demonstrate the interrelation among E2F1-cyclin E1-cyclin E2 and the pivotal role this circuit exerts in CSMC proliferation. Additionally, our work validates the concept of utilizing anti-E2F1-cyclin E1-cyclin E2 siRNAs to develop a potential novel therapy to control intimal hyperplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.