Dysfunction of the immune system underlies a plethora of human diseases, requiring the development of immunomodulatory therapeutic intervention. To date, most strategies employed have been focusing on the modification of T lymphocytes, and although remarkable improvement has been obtained, results often fall short of the intended outcome. Recent cutting-edge technologies have highlighted macrophages as potential targets for disease control. Macrophages play central roles in development, homeostasis and host defence, and their dysfunction and dysregulation have been implicated in the onset and pathogenesis of multiple disorders including cancer, neurodegeneration, autoimmunity and metabolic diseases. Recent advancements have led to a greater understanding of macrophage origin, diversity and function, in both health and disease. Over the last few years, a variety of strategies targeting macrophages have been developed and these open new therapeutic opportunities. Here, we review the progress in macrophage reprogramming in various disorders and discuss the potential implications and challenges for macrophage-targeted approaches in human disease.
The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a global health crisis and will likely continue to impact public health for years. As the effectiveness of the innate immune response is crucial to patient outcome, huge efforts have been made to understand how dysregulated immune responses may contribute to disease progression. Here we have reviewed current knowledge of cellular innate immune responses to SARS-CoV-2 infection, highlighting areas for further investigation and suggesting potential strategies for intervention. We conclude that in severe COVID-19 initial innate responses, primarily type I interferon, are suppressed or sabotaged which results in an early interleukin (IL)-6, IL-10 and IL-1β-enhanced hyperinflammation. This inflammatory environment is driven by aberrant function of innate immune cells: monocytes, macrophages and natural killer cells dispersing viral pathogen-associated molecular patterns and damage-associated molecular patterns into tissues. This results in primarily neutrophil-driven pathology including fibrosis that causes acute respiratory distress syndrome. Activated leukocytes and neutrophil extracellular traps also promote immunothrombotic clots that embed into the lungs and kidneys of severe COVID-19 patients, are worsened by immobility in the intensive care unit and are perhaps responsible for the high mortality. Therefore, treatments that target inflammation and coagulation are promising strategies for reducing mortality in COVID-19.
Tissue-resident macrophages exhibit specialized phenotypes dependent on their in vivo physiological niche. Investigation of their function often relies upon complex whole mouse transgenic studies. While some appropriate lineage-associated promoters exist, there are no options for tissue-specific targeting of macrophages. We have developed full protocols for in vivo productive infection (defined by stable transgene expression) of tissue-resident macrophages with lentiviral vectors, enabling RNA and protein overexpression, including expression of small RNA species such as shRNA, to knock down and modulate gene expression. These approaches allow robust infection of peritoneal tissue-resident macrophages without significant infection of other cell populations. They permit rapid functional study of macrophages in homeostatic and inflammatory settings, such as thioglycolate-induced peritonitis, while maintaining the cells in their physiological context. Here we provide detailed protocols for the whole workflow: viral production, purification, and quality control; safety considerations for administration of the virus to mice; and assessment of in vivo transduction efficiency and the low background levels of inflammation induced by the virus. In summary, we present a quick and accessible protocol for the rapid assessment of gene function in peritoneal tissue-resident macrophages in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.