Selective catalytic reduction of CO 2 to methanol has tremendous importance in the chemical industry. It mitigates two critical issues in the modern society, the overwhelming climate change and the dependence on fossil fuels. The most used catalysts are currently based on mixed copper and zinc phases, where the high surface of active copper species is a critical factor for the catalyst performance. Motivated by the recent breakthrough in the controllable synthesis of bimetallic MOF-74 materials by ball milling, we targeted to study the potential of ZnCu-MOF-74 for catalytic CO 2 reduction. Here, we tested whether the nanosized channels decorated with readily accessible and homogeneously distributed Zn and Cu metal sites would be advantageous for the catalytic CO 2 reduction. Unlike the inactive monometallic Cu-MOF-74, ZnCu-MOF-74 shows moderate catalytic activity and selectivity for the methanol synthesis. Interestingly, the postsynthetic mechanochemical treatment of desolvated ZnCu-MOF-74 resulted in amorphization and a significant increase in both the activity and selectivity of the catalyst despite the destruction of the well-ordered and porous MOF-74 architecture. The results emphasize the importance of defects for the MOF catalytic activity and the potential of amorphous MOFs to be considered as heterogeneous catalysts. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and 13 C magic angle-spinning nuclear magnetic resonance (MAS NMR) were applied to establish quantitative structure− reactivity relationships. The apparent activation energy of rate reaction kinetics has indicated different pathway mechanisms, primarily through reverse water−gas shift (RWGS). Prolonged time on stream productivity, stability and deactivation were assessed, analysing the robustness or degradation of metal−organic framework nanomaterials. Scalable MOF production processes are making the latter more appealing within emerging industrial decarbonisation, in particular for carbon capture and utilisation (CCU) or hydrogen carrier storage. Acknowledging scale, the costs of fabrication are paramount.
Mechanochemical processing of bulk solids has developed in the last three decades into a powerful and popular tool for the green synthesis and transformation of various classes of materials. Due to its efficiency and unique reactivity, mechanochemistry is becoming an integral part of synthetic laboratories and industrial procedures. However, despite its increasing popularity and usefulness, mechanochemistry is primarily based on simple techniques like grinding by hand -where the outcome often depends on the consistency and strength of the experimentalist -or milling in comminution devices, where a certain level of control is achieved through defining the frequency of milling and the weight of the milling media. Recently, however, mechanochemical reactivity started being complemented and altered by other energy sources commonly used in solution-based chemistry. Milling under controlled temperature, or photo-, sono-, and electro impulses in newly developed experimental setups has led to reactions not achievable by conventional mechanochemical processing. This Perspective describes the new reactivity discovered through these combinations of energy inputs, as well as the advances in equipment tailored to synthetic mechanochemistry that enabled them. We propose that these techniqueshere termed thermomechanochemistry, sono-mechanochemistry, electro-mechanochemistry, and photomechanochemistryrepresent a significant advance in modern mechanochemistry and herald a new level of solid-state reactivity: Mechanochemistry 2.0.
Encapsulation and confinement of fullerene guests in metal-organic frameworks (MOFs) lead to a novel class of crystalline fulleretic materials with unique physicochemical properties and a broad field of potential applications. The control over the amount of target guests confined in the MOF structure remains a significant challenge, which is particularly pronounced in the confinement of hardly accessible fullerene derivatives. The main strategies used in constructing fulleretic composites are limited by the solubility of components used and solvent versus guest competition for inhabitation of the framework voids. As mechanochemical procedures often overcome these issues, we developed here solvent-free processing by ball milling to gain control over the encapsulation of bulky and rigid C 60 -fullerene into a sodalite MOF with large cages and narrow cage-apertures. A rapid, green, efficient, and stoichiometry-controlled mechanochemical processing afforded four model C 60 @zeolitic-imidazolate framework 8 (ZIF-8) crystalline materials containing target 15, 30, 60, and 100 mol % of fullerene entrapped in the accessible cages of the model sodalite zeolitic-imidazolate framework 8 (ZIF-8), in stark contrast to the solution-based strategies that resulted in almost no loading. Varying the fullerene content affects the framework's vibrational properties, color and luminescence of the composites, and the electron-dose radiation stability. The computational and spectroscopic studies show that the fullerene is accommodated in the cage's center and that the cage-to-cage transport is a hardly feasible and energetically unfavored process. However, the fast release of C 60 molecules from ZIF-8 can be effectively controlled by the pH. The entrapment of fullerene molecules in ZIF-8 resulted in their effective isolation even in higher loadings, paving the way to other tunable porous fulleretics containing single-molecule magnets or nanoprobes available on low scales.
Atom-and energy-efficient synthesis of a crystalline calcium urea sulfate ([Ca(urea) 4 ]SO 4 ) cocrystal was explored using thermally controlled mechanochemical methods with calcium sulfate compounds containing various amounts of crystalline water (CaSO 4 •xH 2 O, x = 0, 0.5, 2). Small-scale (200 mg) experiments in a shaker mill were first performed, and the progress was monitored by in situ Raman spectroscopy and in situ synchrotron powder X-ray diffraction. Time-resolved spectroscopy data revealed that the presence of water in the reagents' crystalline structure was essential to the reaction and largely determined the observed reactivity of different calcium sulfate forms. Reactions at elevated temperatures were shown to proceed significantly faster on all synthetic scales, while changes in rheology caused by adding external water hindered the reaction progress. The average yield of a 21 mm horizontal twin-screw extruder experiment was ∼5.5 g/ min of extrusion (∼330 g/h). Energy consumption during the milling reactions required to achieve complete conversion ranged from 7.6 W h/g at 70 °C for a mixer mill to 3.0 W h/g at a 50 g scale and 4.0 W h/g at a 100 g scale for a planetary mill or 4.0 W h/g at both 70 °C and RT for a twin-screw extruder, showing a significant improvement in energy efficiency at large-scale production. The obtained crystalline cocrystal exhibited a significantly lower solubility in aqueous solutions, nearly 20 times lower per molar basis compared to that of urea. Furthermore, reactive nitrogen emissions in air at 90% relative humidity, measured as NH 3 , showed slow and nearly linear nitrogen loss for the cocrystal over 90 days, while the same level of emissions was achieved with urea after 1−2 weeks, showing the potential of this cocrystal material as a large-scale nitrogen-efficient fertilizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.