Extracellular vesicles (EVs) are nanometric membranous structures secreted from almost every cell and present in biofluids. Because EV composition reflects the state of its parental tissue, EVs possess an enormous diagnostic/prognostic potential to reveal pathophysiological conditions. However, a prerequisite for such usage of EVs is their detailed characterisation, including visualisation which is mainly achieved by atomic force microscopy (AFM) and electron microscopy (EM). Here we summarise the EV preparation protocols for AFM and EM bringing out the main challenges in the imaging of EVs, both in their natural environment as biofluid constituents and in a saline solution after EV isolation. In addition, we discuss approaches for EV imaging and identify the potential benefits and disadvantages when different AFM and EM methods are applied, including numerous factors that influence the morphological characterisation, standardisation, or formation of artefacts. We also demonstrate the effects of some of these factors by using cerebrospinal fluid as an example of human biofluid with a simpler composition. Here presented comparison of approaches to EV imaging should help to estimate the current state in morphology research of EVs from human biofluids and to identify the most efficient pathways towards the standardisation of sample preparation and microscopy modes.
DNA origami is a promising technology for its reproducibility, flexibility, scalability and biocompatibility. Among the several potential applications, DNA origami has been proposed as a tool for drug delivery and as a contrast agent, since a conformational change upon specific target interaction may be used to release a drug or produce a physical signal, respectively. However, its conformation should be robust with respect to the properties of the medium in which either the recognition or the read-out take place, such as pressure, viscosity and any other unspecific interaction other than the desired target recognition. Here we report on the read-out robustness of a tetragonal DNA-origami/gold-nanoparticle hybrid structure able to change its configuration, which is transduced in a change of its plasmonic properties, upon interaction with a specific DNA target. We investigated its response when analyzed in three different media: aqueous solution, solid support and viscous gel. We show that, once a conformational variation is produced, it remains unaffected by the subsequent physical interactions with the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.