Autonomous vehicles make use of sensors to perceive the world around them, with heavy reliance on visionbased sensors such as RGB cameras. Unfortunately, since these sensors are affected by adverse weather, perception pipelines require extensive training on visual data under harsh conditions in order to improve the robustness of downstream tasks -data that is difficult and expensive to acquire. Based on GAN and CycleGAN architectures, we propose an overall (modular) architecture for constructing datasets, which allows one to add, swap out and combine components in order to generate images with diverse weather conditions. Starting from a single dataset with ground-truth, we generate 7 versions of the same data in diverse weather, and propose an extension to augment the generated conditions, thus resulting in a total of 14 adverse weather conditions, requiring a single ground truth. We test the quality of the generated conditions both in terms of perceptual quality and suitability for training downstream tasks, using real world, out-of-distribution adverse weather extracted from various datasets. We show improvements in both object detection and instance segmentation across all conditions, in many cases exceeding 10 percentage points increase in AP, and provide the materials and instructions needed to re-construct the multi-weather dataset, based upon the original Cityscapes dataset.
In an autonomous driving system, perception -identification of features and objects from the environment -is crucial. In autonomous racing, high speeds and small margins demand rapid and accurate detection systems. During the race, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres. In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions -the collection of which is a tedious, laborious, and costly process. However, recent developments in CycleGAN architectures allow the synthesis of highly realistic scenes in multiple weather conditions. To this end, we introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors by an average of 42.7 and 4.4 mAP percentage points in the presence of night-time conditions and droplets, respectively. Furthermore, we present a comparative analysis of five object detectors -identifying the optimal pairing of detector and training data for use during autonomous racing in challenging conditions.
In this paper we present a compositing image synthesis method that generates RGB canvases with well aligned segmentation maps and sparse depth maps, coupled with an inpainting network that transforms the RGB canvases into high quality RGB images and the sparse depth maps into pixelwise dense depth maps. We benchmark our method in terms of structural alignment and image quality, showing an increase in mIoU over SOTA by 3.7 percentage points and a highly competitive FID. Furthermore, we analyse the quality of the generated data as training data for semantic segmentation and depth completion, and show that our approach is more suited for this purpose than other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.