A series of helically shaped benzo[b]chryseno[4,3‐d]thiophenes, naphtho[1,2‐b]phenanthro[4,3‐d]thiophenes, and chryseno[3,4‐b]naphtho[1,2‐d]thiophenes is synthesized via a highly enantioselective Au‐catalyzed intramolecular alkyne hydroarylation reaction. The inversion barriers of the structures obtained are determined both theoretically and experimentally, and their chiroptical properties are reported. Preliminary studies on the post‐synthetic functionalization of these thiahelicenes and their transformation into azahelicenes are also presented. In addition, a straightforward one‐step protocol is developed, which wraps the initially obtained chryseno[3,4‐b]naphtho[1,2‐d]thiophenes into bowl‐shaped pleiadene derivatives without erosion of the enantiopurity. The number of structurally related products that are obtained with high enantioselectivity enables the establishment of comprehensive correlations between the structure and conformational stability or (chir)optical properties.
Environmentally relevant contaminants endowed with chirality may include pharmaceutical compounds, flame retardants, perfluoroalkyl chemicals, pesticides, and polychlorinated biphenyls. Despite having similar physicochemical properties, enantiomers may differ in their biochemical interactions with enzymes, receptors, and other chiral molecules leading to different biological responses. In this work, we have designed a wireless miniaturized stereoselective light-emitting system able to qualitatively detect a chiral contaminant (3,4-dihydroxyphenylalanine, DOPA) dissolved in reduced volumes (in the microliters range), through bipolar electrochemistry. The diastereomeric environment was created by mixing the enantiomers of an inherently chiral inductor endowed with helical shape (7,8-dipropyltetrathia[7]helicene) and the chiral probe (DOPA) in micro-solutions of a commercial ionic liquid. The synergy between the inductor, the applied electric field, and the chiral pollutant was transduced by the light emission produced from a miniaturized light-emitting diode (LED) exploited in such an approach as a bipolar electrode.
We report on the synthesis of a novel class of functionalized thia[6]helicenes and a thia[5]helicene, containing a benzothiophene unit and a second heteroatom embedded in the helix (i.e., nitrogen and oxygen) or a pyrene or a spirobifluorene moiety. These systems are obtained through straightforward and general procedures that involve: (i) palladium-catalyzed annulation of iodo-atropoisomers with internal alkynes and (ii) Suzuki coupling of iodo-atropoisomers with phenyl boronic acid followed by a Mallory-type reaction. Both experimental and theoretical studies on the configurational stability of some selected thia[6]helicenes confirmed their stability toward racemization at room temperature, while the pyrene-based thia[5]helicene was found to be unstable. Moreover, the configuration assignment for one representative thiahelicene was established through the comparison between experimental and theoretical circular dichroism (CD) spectra. A systematic study of the photophysical properties of both thiahelicenes and the corresponding atropoisomers has been carried out to provide a complete overview on the new molecules proposed in this work. The obtained data showed regular trends in all the thiahelicene series with spectroscopic traits in line with those previously observed for similar heterohelicenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.