Syntheses of 6-halogen-substituted benzothiazoles were performed by condensation of 4-hydroxybenzaldehydes and 2-aminotiophenoles and subsequent O-alkylation with appropriate halides, whereas 6-amidino-substituted benzothiazoles were synthesized by condensation of 5-amidino-2-aminothiophenoles and corresponding benzaldehydes. While most of the compounds from non-substituted and halogen-substituted benzothiazole series showed marginal antiproliferative activity on tested tumor cell lines, amidino benzazoles exhibited stronger inhibitory activity. Generally, imidazolyl benzothiazoles showed pronounced and nonselective activity, with the exception of 36c which had a strong inhibitory effect on HuT78 cells (IC50 = 1.6 µM) without adverse cytotoxicity on normal BJ cells (IC50 >100 µM). Compared to benzothiazoles, benzimidazole structural analogs 45a–45c and 46c containing the 1,2,3-triazole ring exhibited pronounced and selective antiproliferative activity against HuT78 cells with IC50 < 10 µM. Moreover, compounds 45c and 46c containing the methoxy group at the phenoxy unit were not toxic to normal BJ cells. Of all the tested compounds, benzimidazole 45a with the unsubstituted phenoxy central core showed the most pronounced cell growth inhibition on THP1 cells in the nanomolar range (IC50 = 0.8 µM; SI = 70). QSAR models of antiproliferative activity for benzazoles on T-cell lymphoma (HuT78) and non-tumor MDCK-1 cells elucidated the effects of the substituents at position 6 of benzazoles, demonstrating their dependence on the topological and spatial distribution of atomic mass, polarizability, and van der Waals volumes. A notable cell cycle perturbation with higher accumulation of cells in the G2/M phase, and a significant cell increase in subG0/G1 phase were found in HuT78 cells treated with 36c, 42c, 45a–45c and 46c. Apoptotic morphological changes, an externalization of phosphatidylserine, and changes in the mitochondrial membrane potential of treated cells were observed as well.
An ultrasound-assisted synthesis has been used for the preparation of novel benzothiazole Schiff bases (1-3) as ligands for Zn(II) and Cu(II) metal complexes. In this class of Schiff base ligands, the isolated complexes 1a and 2a appear to be the only ones that have structures which include both the Schiff base ligand and the hydrolysis product 2-aminobenzothiazole in the same complex molecule. The aldehydes formed by Schiff base hydrolysis formed a rare example of a trans-isomer in pentacoordinated 2,4-disubstituted benzaldehyde complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.