We construct a complete set of quasi-local integrals of motion for the manybody localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum t0, 1u, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.
We review the current (as of Fall 2016) status of the studies on the emergent integrability in many-body localized models. We start by explaining how the phenomenology of fully many-body localized systems can be recovered if one assumes the existence of a complete set of (quasi)local operators which commute with the Hamiltonian (local integrals of motions, or LIOMs). We describe the evolution of this idea from the initial conjecture, to the perturbative constructions, to the mathematical proof given for a disordered spin chain. We discuss the proposed numerical algorithms for the construction of LIOMs and the status of the debate on the existence and nature of such operators in systems with a many-body mobility edge, and in dimensions larger than one.
We study rough high-dimensional landscapes in which an increasingly stronger preference for a given configuration emerges. Such energy landscapes arise in glass physics and inference. In particular we focus on random Gaussian functions, and on the spiked-tensor model and generalizations. We thoroughly analyze the statistical properties of the corresponding landscapes and characterize the associated geometrical phase transitions. In order to perform our study, we develop a framework based on the Kac-Rice method that allows to compute the complexity of the landscape, i.e. the logarithm of the typical number of stationary points and their Hessian. This approach generalizes the one used to compute rigorously the annealed complexity of mean-field glass models. We discuss its advantages with respect to previous frameworks, in particular the thermodynamical replica method which is shown to lead to partially incorrect predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.