Chloride transport by a series of steroid-based "cholapod" receptors/carriers was studied in vesicles. The principal method involved preincorporation of the cholapods in the vesicle membranes, and the use of lucigenin fluorescence quenching to detect inward-transported Cl − . The results showed a partial correlation between anion affinity and transport activity, in that changes at the steroidal 7 and 12 positions affected both properties in concert. However, changes at the steroidal 3-position yielded irregular effects. Among the new steroids investigated the bis-p-nitrophenylthiourea 3 showed unprecedented activity, giving measurable transport through membranes with a transporter/lipid ratio of 1:250 000 (an average of <2 transporter molecules per vesicle). Increasing transporter lipophilicity had no effect, and positively charged steroids had low activity. The p-nitrophenyl monourea 25 showed modest but significant activity. Measurements using a second method, requiring the addition of transporters to preformed vesicle suspensions, implied that transporter delivery was problematic in some cases. A series of measurements employing membranes of different thicknesses provided further evidence that the cholapods act as mobile anion carriers.
Cholic acid has been transformed into cyclotrimeric and cyclotetrameric toroidal amphiphiles with inward-directed ammonium substituents; the cyclotrimer effects the transport of chloride anions across vesicle bilayer membranes.
Even better than the real thing? As host molecules, long synthetic nanotubes may be reasonable alternatives to single‐walled nanotubes. For example, calixarene‐based nanotubes effectively pack into infinite tubular bundles in the solid state (see picture), and they can be easily filled with guest molecules to form stable, but reversible, encapsulation complexes.
We report the synthesis and encapsulation properties of long (up to 5 nm) molecular nanotubes 1-4, which are based on calix[4]arenes and can be filled with multiple nitrosonium (NO(+)) ions upon reaction with NO(2)/N(2)O(4) gases. These are among the largest nanoscale molecular containers prepared to date and can entrap up to five guests. The structure and properties of tubular complexes 1(NO(+))(2)-4(NO(+))(5) were studied by UV/Vis, FTIR, and (1)H NMR spectroscopy in solution, and also by molecular modeling. Entrapment of NO(+) in 1(NO(+))(2)-4(NO(+))(5) is reversible, and addition of [18]crown-6 quickly recovers starting tubes 1-4. The FTIR and titration data revealed enhanced binding of NO(+) in longer tubes, which may be due to cooperativity. The described nanotubes may serve as materials for storing and converting NO(x) and also offer a promise to further develop supramolecular chemistry of molecular containers. These findings also open wider perspectives towards applications of synthetic nanotubes as alternatives to carbon nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.