In this paper we present the development of quasi-hemispherical gamma-ray detectors based on CdZnTe. Among the possible single-polarity electrode configurations, such as coplanar, pixelated, or virtual Frisch-grid geometries, quasi-hemispherical detectors are the most cost-effective alternative with comparable raw energy resolution in the high and low energy range. The optimal configuration of the sensor in terms of dimension of the crystals and electrode specifications has been first determined by simulations, and successively validated with experimental measures. Spectra from different sources have been acquired to evaluate the detectors performances. Three types of detectors with different CZT volumes have been fabricated, namely 10 × 10 × 5 mm3, 15 × 15 × 10 mm3 and 20 × 20 × 10 mm3. In the case of 10 × 10 × 5 mm3 crystals, the optimum pixel size determined by our simulation tool was confirmed by experiments: the best spectroscopic resolution of 1.3% at 662 keV has been found for a 750 μm diameter pixel detector. The best energy resolution values obtained for the 15 × 15 × 10 mm3 and 20 × 20 × 10 mm3 detectors were respectively 1.7% and 2.7% at 662 keV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.